Development Of Planarizing Spin-On Carbon Materials For High-Temperature Processes


Multilayer lithography is used for advanced semiconductor processes to pattern complex structures. As more and more procedures incorporate a high-temperature process, such as chemical vapor deposition (CVD), the need for thermally stable materials increases. For certain applications, a spin-on carbon (SOC) layer under the CVD layer is required to survive through a high-temperature process. ... » read more

Improving EUV Process Efficiency


The semiconductor industry is rethinking the manufacturing flow for extreme ultraviolet (EUV) lithography in an effort to improve the overall process and reduce waste in the fab. Vendors currently are developing new and potentially breakthrough fab materials and equipment. Those technologies are still in R&D and have yet to be proven. But if they work as planned, they could boost the flo... » read more

Node Within A Node


Enough margin exists in manufacturing processes to carve out the equivalent of a full node of scaling, but shrinking that margin will require a collective push across the entire semiconductor manufacturing supply chain. Margin is built into manufacturing at various stages to ensure that chips are manufacturable and yield sufficiently. It can include everything from variation in how lines are... » read more

Inspection, Metrology Challenges Grow For SiC


Inspection and metrology are becoming more critical in the silicon carbide (SiC) industry amid a pressing need to find problematic defects in current and future SiC devices. Finding defects always has been a challenging task for SiC devices. But it’s becoming more imperative to find killer defects and reduce them as SiC device vendors begin to expand their production for the next wave of a... » read more

System Bits: June 4


Thin films for quantum computing Researchers at Los Alamos National Laboratory report their development of two-dimensional tungsten/selenium thin films that can control the emission of single photons, potentially useful in quantum technologies. “Efficiently controlling certain thin-film materials so they emit single photons at precise locations—what’s known as deterministic quantum em... » read more

Controlling Variability And Cost At 3nm And Beyond


Richard Gottscho, executive vice president and CTO of Lam Research, sat down with Semiconductor Engineering to talk about how to utilize more data from sensors in manufacturing equipment, the migration to new process nodes, and advancements in ALE and materials that could have a big impact on controlling costs. What follows are excerpts of that conversation. SE: As more sensors are added int... » read more

How Atomic Layer Deposition Works


Imagine being able to deposit a film of material just a few atomic layers at a time. As impossible as that sounds, atomic layer deposition (ALD) is a reality. In fact, it’s being used in an ever-increasing number of applications as an extremely precise and controllable process for creating thin films. Together with its etch counterpart – atomic layer etching (ALE) – ALD is enabling the us... » read more

Where MEMS Can Boldly Go Now


MEMS chips are being designed to go into the human body as biosensors, which will require unique packaging. And as demand grows for assisted and automated driving, MEMS devices also are finding new use cases in automotive electronics, their chief market segment prior to the millennium. Pressure sensors, such as those that monitor the air pressure in tires, remain the biggest type of [getkc i... » read more

A Look At Atomic Layer Deposition


Imagine being able to deposit a film of material just a few atomic layers at a time. As impossible as that sounds, atomic layer deposition (ALD) is a reality. In fact, it’s being used in an ever-increasing number of applications as an extremely precise and controllable process for creating thin films. Together with its etch counterpart – atomic layer etching (ALE) – ALD is enabling the us... » read more

Intel Inside The Package


Mark Bohr, senior fellow and director of process architecture and integration at Intel, sat down with Semiconductor Engineering to discuss the growing importance of multi-chip integration in a package, the growing emphasis on heterogeneity, and what to expect at 7nm and 5nm. What follows are excerpts of that interview. SE: There’s a move toward more heterogeneity in designs. Intel clearly ... » read more

← Older posts