Productivity Keeping Pace With Complexity


Designs have become larger and more complex and yet design time has shortened, but team sizes remain essentially flat. Does this show that productivity is keeping pace with complexity for everyone? The answer appears to be yes, at least for now, for a multitude of reasons. More design and IP reuse is using more and larger IP blocks and subsystems. In addition, the tools are improving, and mo... » read more

Memory Access In AI Systems


Memory access is a key consideration in AI system design. Ron Lowman, strategic marketing manager for IP at Synopsys, talks about how memory affects overall power consumption, why partitioning of on-chip and off-chip is so critical to performance and power, and how this changes from the cloud to the edge. » read more

Essential DDR5 Features Designers Must Know


JEDEC has defined and developed three DDR standards – standard DDR, mobile DDR, and graphic DDR – to help designers meet their memory requirements. DDR5 will support a higher data rate (up to 6400 Mb/s) at a lower I/O Voltage (1.1V) and a higher density (based on 16Gb DRAM dies) than DDR4. DDR5 DRAMs and dual-inline memory modules (DIMMs) are expected to hit the market in 2020. This article... » read more

High-Speed SerDes At 7/5nm


Manmeet Walia, senior product marketing manager at Synopsys, talks with Semiconductor Engineering about how to optimize PHYs for integration on all four corners of an SoC, as well as the PPA implications of moving large amounts of data across and around a chip. » read more

What Is DRAM’s Future?


Memory — and DRAM in particular — has moved into the spotlight as it finds itself in the critical path to greater system performance. This isn't the first time DRAM has been the center of attention involving performance. The problem is that not everything progresses at the same rate, creating serial bottlenecks in everything from processor performance to transistor design, and even the t... » read more

HBM Issues In AI Systems


All systems face limitations, and as one limitation is removed, another is revealed that had remained hidden. It is highly likely that this game of Whac-A-Mole will play out in AI systems that employ high-bandwidth memory (HBM). Most systems are limited by memory bandwidth. Compute systems in general have maintained an increase in memory interface performance that barely matches the gains in... » read more

High-Performance Memory For AI And HPC


Frank Ferro, senior director of product management at Rambus, examines the current performance bottlenecks in high-performance computing, drilling down into power and performance for different memory options, and explains what are the best solutions for different applications and why. » read more

Die-To-Die Connectivity


Manmeet Walia, senior product marketing manager at Synopsys, talks with Semiconductor Engineering about how die-to-die communication is changing as Moore’s Law slows down, new use cases such as high-performance computing, AI SoCs, optical modules, and where the tradeoffs are for different applications.   Interested in more Semiconductor Engineering videos? Sign-up for our YouTu... » read more

Advanced Features Of High Speed Digital I/O Devices: Double Data Rate


As clock speeds and data rates continue to increase, designers of digital integrated circuits are creating new ways to maximize the rate of data being sent into and out of digital devices. One such method is known as double data rate (DDR). With single data rate (SDR) devices, data is latched on either the rising or falling edges of the sample clock. A DDR device latches data on both the rising... » read more

Latency Under Load: HBM2 vs. GDDR6


Steven Woo, Rambus fellow and distinguished inventor, explains why data traffic and bandwidth are critical to choosing the type of DRAM, options for improving traffic flow in different memory types, and how this works with multiple memory types.   Related Video GDDR6 - HBM2 Tradeoffs Why designers choose one memory type over another. Applications for each were clearly delineate... » read more

← Older posts