Moving To GAA FETs


How do you measure the size of a transistor? Is it the gate length, or the distance between the source and drain contacts? For planar transistors, the two values are approximately the same. The gate, plus a dielectric spacer, fits between the source and drain contacts. The contact pitch, limited by the smallest features that the lithography process can print, determines how many transistors ... » read more

Moore And More


For more than 50 years, the semiconductor industry has enjoyed the benefits of Moore's Law — or so it seemed. In reality, there were three laws rolled up into one: Each process generation would have a higher clock speed at the same power. This was not discovered by Moore, but by Dennard, who also invented the DRAM. Process generations continue to get faster and lower power, but the power... » read more

Moore’s Law, Supply Chains And Security


The debate about the future of Moore's Law continues, while other parts of the industry look for alternatives. In between, supply chains are being pulled in multiple directions, with safety and security often in the middle. All across the semiconductor industry, significant changes are underway. Some of these have been in the works for some time. Others are new or accelerating faster than an... » read more

Interdependencies Complicate IC Power Grid Design


Creating the right power grid is a growing problem in leading-edge chips. IP and SoC providers are spending a considerable amount of time defining the architecture of logic libraries in order to enable different power grids to satisfy the needs of different market segments. The end of Dennard scaling is one of the reasons for the increased focus. With the move to smaller nodes, the amount of... » read more

Solving The Memory Bottleneck


Chipmakers are scrambling to solve the bottleneck between processor and memory, and they are turning out new designs based on different architectures at a rate no one would have anticipated even several months ago. At issue is how to boost performance in systems, particularly those at the edge, where huge amounts of data need to be processed locally or regionally. The traditional approach ha... » read more

Semiconductor’s Dinosaurs


Dinosaurs once ruled this planet. They existed in every shape and form – some large, others tiny. Each adapted to its own specific environment. Some stayed on the land, others went to sea, and yet another group took to the skies. They looked like they were invincible and would be the pinnacle of the food chain. Then a cataclysmic event happened, and dinosaurs went into a fairly rapid decline.... » read more

CEO Outlook: It Gets Much Harder From Here


Semiconductor Engineering sat down to discuss what's changing across the semiconductor industry with Wally Rhines, CEO emeritus at Mentor, a Siemens Business; Jack Harding, president and CEO of eSilicon; John Kibarian, president and CEO of PDF Solutions; and John Chong, vice president of product and business development for Kionix. What follows are excerpts of that discussion, which was held in... » read more

In-Memory Computing Challenges Come Into Focus


For the last several decades, gains in computing performance have come by processing larger volumes of data more quickly and with superior precision. Memory and storage space are measured in gigabytes and terabytes now, not kilobytes and megabytes. Processors operate on 64-bit rather than 8-bit chunks of data. And yet the semiconductor industry’s ability to create and collect high quality ... » read more

What’s the Right Path For Scaling?


The growing challenges of traditional chip scaling at advanced nodes are prompting the industry to take a harder look at different options for future devices. Scaling is still on the list, with the industry laying plans for 5nm and beyond. But less conventional approaches are becoming more viable and gaining traction, as well, including advanced packaging and in-memory computing. Some option... » read more

What Makes A Chip Design Successful Today?


"Transistors are free" was the rallying cry of the semiconductor industry during the 1990s and early 2000s. That is no longer true. The end of Dennard scaling made the simultaneous use of all the transistors troublesome, but transistors remained effectively unlimited. This led to an era where large amounts of flexibility could be built into a chip. It didn't matter if all of it was being use... » read more

← Older posts