中文 English

High Electron Mobility in Strained GaAs Nanowires


Abstract: "Transistor concepts based on semiconductor nanowires promise high performance, lower energy consumption and better integrability in various platforms in nanoscale dimensions. Concerning the intrinsic transport properties of electrons in nanowires, relatively high mobility values that approach those in bulk crystals have been obtained only in core/shell heterostructures, where elec... » read more

The Good And Bad Of 2D Materials


Despite years of warnings about reaching the limits of silicon, particularly at leading-edge process nodes where electron mobility is limited, there still is no obvious replacement. Silicon’s decades-long dominance of the integrated circuit industry is only partly due to the material’s electronic properties. Germanium, gallium arsenide, and many other semiconductors offer superior mobili... » read more

Re-Engineering The FinFET


The semiconductor industry is still in the early stages of the [getkc id="185" kc_name="finFET"] era, but the [getkc id="26" kc_name="transistor"] technology already is undergoing a dramatic change. The fins themselves are getting a makeover. In the first-generation finFETs, the fins were relatively short and tapered. In the next wave, the fins are expected to get taller, thinner and more re... » read more

Manufacturing Bits: Jan. 14


MoS2 FETs Two-dimensional materials are gaining steam in the R&D labs. The 2D materials include graphene, boron nitride (BN) and the transition-metal dichalcogenides (TMDs). One TMD, molybdenum diselenide (MoS2), is an attractive material for use in future field-effect transistors (FETs). MoS2 has several properties, including a non-zero band gap, atomic scale thickness and pristine int... » read more