Manufacturing Bits: July 30


Scanning nanopore microscopes ETH Zurich has developed a new microscopy technique that can detect and analyze signals between individual cells in living organisms. The technology, called a force-controlled scanning nanopore microscope, is a new way to look at the behavior of individual cells. So far, researchers have tested the technology on rat brain tissue. It could one day be used to pro... » read more

Copy-Row DRAM (CROW) : Substrate for Improving DRAM


Source/Credit: ETH Zurich & Carnegie Mellon University Click here for the technical paper and here for the power point slides » read more

Week in Review: IoT, Security, Auto


Products/Services Mentor, a Siemens Business, announced the release of the final phase of the Valor software New Product Introduction design-for-manufacturing technology, automating printed circuit board design reviews. The company has integrated DFM technology into the Xpedition software layout application. Arteris IP reports that Toshiba has taped out its next-generation advanced driv... » read more

Manufacturing Bits: April 16


Water that won’t freeze ETH Zurich and the University of Zurich have developed water that doesn’t freeze at cold temperatures. Using various molecules with water, researchers have been able to cool the substance down to minus 263 degrees Celsius. Even then, there were no ice crystals formed in the substance. This technology could be used to develop new biomolecules and membranes for ... » read more

System Bits: Jan. 29


Quantum physics make hybrid semiconductors glow Hybrid semiconducting materials have quantum properties capable of bringing significant changes to light-emitting diode lighting and monitors, along with photovoltaic solar cells, researchers at the Georgia Institute of Technology report. Physical chemists worked with halide organic-inorganic perovskite (HOIP), which combines a crystal lattice wi... » read more

Power/Performance Bits: Jan. 14


Optical memory Researchers at the University of Oxford, University of Exeter, and University of Münster propose an all-optical memory cell that can store more optical data, 5 bits, in a smaller space than was previously possible on-chip. The optical memory cell uses light to encode information in the phase change material Ge2Sb2Te5. A laser causes the material to change between ordered and... » read more

System Bits: Jan. 2


Princeton plumbs blockchain technology Researchers at Princeton University’s School of Engineering and Applied Science are looking at how blockchain technology can provide secure financial transactions, among other applications. “Early on we realized this was a technology that was not well understood but that a lot of people were interested in,” says Ed Felten, the Robert E. Kahn Profess... » read more

System Bits: Dec. 4


High precision system for self-driving car navigation Based on technology developed by ETH Zurich researchers, Fixposition is a spin-off specializing in real-time navigation systems for use in self-driving vehicles, robots or industrial drones, which uses a combination of satellite-based positioning systems such as GPS with computer vision technologies to achieve an unparalleled degree of prec... » read more

Can Graphene Be Mass Manufactured?


Since the isolation of graphene in 2004, the high mobility and unique transport properties of 2-dimensional semiconductors have tantalized physicists and materials scientists. Their in-plane carrier transport and lack of dangling bonds potentially can minimize line/edge scattering and other effects of extreme scaling. While 2-D materials cannot compete with silicon at current device dime... » read more

Power/Performance Bits: May 15


Aluminum battery materials Scientists from ETH Zurich and Empa identified two new materials that could boost the development of aluminum batteries, a potential low cost, materially abundant option for temporary storage of renewable energy. The first is a corrosion-resistant material for the conductive parts of the battery; the second is a novel material for the battery's positive pole that ... » read more

← Older posts Newer posts →