System Bits: Jan. 2


Princeton plumbs blockchain technology Researchers at Princeton University’s School of Engineering and Applied Science are looking at how blockchain technology can provide secure financial transactions, among other applications. “Early on we realized this was a technology that was not well understood but that a lot of people were interested in,” says Ed Felten, the Robert E. Kahn Profess... » read more

System Bits: Dec. 4


High precision system for self-driving car navigation Based on technology developed by ETH Zurich researchers, Fixposition is a spin-off specializing in real-time navigation systems for use in self-driving vehicles, robots or industrial drones, which uses a combination of satellite-based positioning systems such as GPS with computer vision technologies to achieve an unparalleled degree of prec... » read more

Can Graphene Be Mass Manufactured?


Since the isolation of graphene in 2004, the high mobility and unique transport properties of 2-dimensional semiconductors have tantalized physicists and materials scientists. Their in-plane carrier transport and lack of dangling bonds potentially can minimize line/edge scattering and other effects of extreme scaling. While 2-D materials cannot compete with silicon at current device dime... » read more

Power/Performance Bits: May 15


Aluminum battery materials Scientists from ETH Zurich and Empa identified two new materials that could boost the development of aluminum batteries, a potential low cost, materially abundant option for temporary storage of renewable energy. The first is a corrosion-resistant material for the conductive parts of the battery; the second is a novel material for the battery's positive pole that ... » read more

Power/Performance Bits: Dec. 5


Solar jet fuel Researchers at ETH Zurich demonstrated the ability to use solar energy to create the precursor to jet fuel from water and carbon dioxide, a process that could lead to carbon-neutral air travel. The scientists performed 295 consecutive cycles in a 4 kW solar reactor, yielding 700 standard liters of hydrogen and carbon monoxide (syngas), the precursor to kerosene and other liqu... » read more

Making high-capacity data caches more efficient


Source: Researchers from MIT, Intel, and ETH Zurich Xiangyao Yu (MIT), Christopher J. Hughes (Intel), Nadathur Satish (Intel) Onur Mutlu (ETH Zurich), Srinivas Devadas (MIT) Technical Paper link MIT News article As the transistor counts in processors have gone up, the relatively slow connection between the processor and main memory has become the chief impediment to improving comp... » read more

System Bits: Oct. 24


Optical communication on silicon chips With the huge increase in computing performance in recent decades achieved by squeezing ever more transistors into a tighter space on microchips, at the same time this downsizing has also meant packing the wiring within microprocessors ever more tightly together. This has led to effects such as signal leakage between components, which can slow down commun... » read more

Manufacturing Bits: Aug. 1


Magnetic chips HRL Laboratories—an R&D venture between Boeing and General Motors—has been awarded a contract to develop a new class of magnetic integrated components. HRL has received the award from the Defense Advanced Research Project Agency (DARPA) under the Magnetic, Miniaturized, and Monolithically Integrated Components (M3IC) program. The goal is to develop new magnetic materials... » read more

System Bits: April 4


Nanodevices for extreme environments in space, on earth Researchers at the Stanford Extreme Environment Microsystems Laboratory (XLab) are on a mission to conquer conditions such as those found on Venus: a hot surface pelted with sulfuric acid rains, 480 degrees C, an atmosphere that would fry today’s electronics. By developing heat-, corrosion- and radiation-resistant electronics, the team ... » read more

Power/Performance Bits: March 21


Tiny redox flow batteries for chips Researchers at ETH Zurich and IBM Research Zurich built a tiny redox flow battery capable of both powering and cooling stacks of chips. In a flow battery, an electrochemical reaction is used to produce electricity out of two liquid electrolytes, which are pumped to the battery cell from outside via a closed electrolyte loop. Such batteries are usually u... » read more

← Older posts Newer posts →