Challenges In 3D Resists


3D integration straddles the line between CMOS fabs and packaging and assembly houses. Depending on the structure being fabricated, the most appropriate process might be more “CMOS-like” or more “package-like.” For example, in CMOS fabs lithography means spin-on photoresist, exposed by a high precision stepper. Inherent in this approach is an assumption that the wafer surface is flat... » read more

Many Stresses Impact TSVs


Too much stress in humans is typically not beneficial, and the same goes for 3D-ICs with through-silicon vias (TSVs). Stress effects here come from the fact that copper, which is the conductor of choice for the TSVs, and silicon have different coefficients of thermal expansion. “If you can imagine that a via will be etched through the silicon, copper will be deposited inside and then t... » read more

The Road Ahead For 2014


Semiconductor Engineering asked several thought leaders in the industry about the market drivers that are affecting their product planning operations for 2014. While almost everyone sees mobile devices continuing to be the major driver during 2014, there are some emerging areas that may start to have a larger impact. This article takes a look at some of those and the impacts they could have on ... » read more

Experts At The Table: MEMS Challenges


Semiconductor Engineering sat down to discuss the challenges of MEMS with Rakesh Kumar, senior director of the MEMS program at GlobalFoundries; Tak Tanaka, managing director for Applied Global Services at Applied Materials; Paul Lindner, executive technology director at EV Group; and Alissa M. Fitzgerald, founder and managing member at A.M. Fitzgerald & Associates. What follows are excerpts... » read more

Experts At The Table: MEMS Challenges


Semiconductor Engineering sat down to discuss the challenges of MEMS with Rakesh Kumar, senior director of the MEMS program at GlobalFoundries; Tak Tanaka, managing director for Applied Global Services at Applied Materials; Paul Lindner, executive technology director at EV Group; and Alissa M. Fitzgerald, founder and managing member at A.M. Fitzgerald & Associates. What follows are excerpts... » read more

Is There Light At The End Of Moore’s Tunnel?


Last month’s article, “Is There Light At The End Of Moore’s Tunnel,” examined the state of the industry in terms of integrating photonics components onto silicon. It concentrated on the piece that has been the hardest to achieve – the laser. However, as realizing that integration goal has become closer to reality, it has also waned in terms of the number of people who believe it is th... » read more

Experts At The Table: MEMS Challenges


Semiconductor Engineering sat down to discuss the challenges of MEMS with Rakesh Kumar, senior director of the MEMS program at GlobalFoundries; Tak Tanaka, managing director for Applied Global Services at Applied Materials; Paul Lindner, executive technology director at EV Group; and Alissa M. Fitzgerald, founder and managing member at A.M. Fitzgerald & Associates. SE: What’s happening... » read more

Is There Light At The End Of Moore’s Tunnel


Electrons are slow, clumsy and quite easily distracted. They’re slow because it now takes a signal longer to cross a chip than the period of the clock signal. They often don’t travel in straight lines as they collide with other atoms. And electromagnetic interference between adjacent signals can mess with the information they are transferring. On the other hand, light has none of these p... » read more

Temporary Bonding, Debonding Remains Challenging For TSV Adoption


By Jeff Chappell One issue with the adoption of TSVs in 3D ICs in mainstream semiconductor applications revolves around the throughput of the temporary wafer bonding and debonding process. This doesn't necessarily equate to a roadblock, but work certainly remains to be done on this and related issues. On one hand, TSVs already are being used in the manufacturing of compound semiconductors ... » read more

Manufacturing Bits: Oct. 1


Nanoimprint Foundry Singapore’s A*STAR’s Institute of Materials Research and Engineering (IMRE) and its partners have launched a new R&D foundry using nanoimprint lithography. The so-called Nanoimprint Foundry is a collaboration between several entities, such as IMRE, Toshiba Machines, EV Group, NTT, NIL Technology, Kyodo International, Micro Resist Technology, Nanoveu and Solves In... » read more

← Older posts Newer posts →