Variation Threat In Advanced Nodes, Packages Grows


Variation is becoming a much bigger and more complex problem for chipmakers as they push to the next process nodes or into increasingly dense advanced packages, raising concerns about the functionality and reliability of individual devices, and even entire systems. In the past, almost all concerns about variation focused on the manufacturing process. What printed on a piece of silicon didn't... » read more

Power Models For Machine Learning


AI and machine learning are being designed into just about everything, but the chip industry lacks sufficient tools to gauge how much power and energy an algorithm is using when it runs on a particular hardware platform. The missing information is a serious limiter for energy-sensitive devices. As the old maxim goes, you can't optimize what you can't measure. Today, the focus is on functiona... » read more

Re-Architecting SerDes


Serializer/Deserializer (SerDes) circuits have been helping semiconductors move data around for years, but new process technologies are forcing it to adapt and change in unexpected ways. Traditionally implemented as an analog circuit, SerDes technology has been difficult to scale, while low voltages, variation, and noise are making it more difficult to yield sufficiently. So to remain releva... » read more

Functional Safety For Fail-Operational Systems


Functional safety issues have long been an important part of product development wherever machine operations that are potentially dangerous for humans are carried out unattended. However, in terms of electrical and electronic systems, the need has been limited to a few industries such as medical technology and aerospace. Apart from that, the functional safety concepts were only used for niche p... » read more

New Security Approaches, New Threats


New and different approaches to security are gaining a foothold as the life expectancy for advanced chips increases, and as emerging technologies such as quantum computing threaten to crack even the most complex encryption schemes. These approaches include everything from homomorphic encryption, where data is processed without being decrypted, to different ways of sending and receiving data ... » read more

Using ICs To Shrink Auto’s Carbon Footprint


A large portion of the burden for reducing greenhouse gases is being handed off to makers of automotive chips and systems, which are being tasked to make vehicles drive further using less energy and with zero emissions. The effort is critical in battling climate change. According to the U.S. Environmental Protection Agency, the transportation sector represented 28.2% of 2018 greenhouse gas e... » read more

Silo Busting In The Design Flow


An increasing number of dependencies in system design are forcing companies, people, tools, and flows to become more collaborative. Design and EDA companies must adapt to this new reality because it has become impossible for anyone to do it all by themselves. Moreover, what happens in manufacturing and packaging needs to be considered up front, and what gets designed in the design phase may ... » read more

Brute-Force Analysis Not Keeping Up With IC Complexity


Much of the current design and verification flow was built on brute force analysis, a simple and direct approach. But that approach rarely scales, and as designs become larger and the number of interdependencies increases, ensuring the design always operates within spec is becoming a monumental task. Unless design teams want to keep adding increasing amounts of margin, they have to locate th... » read more

Electronics For Quantum Communications


Our secure digital communications so far have functioned on the principle of key-based encryption. This involves generating a key of appropriate length, which is then used to encrypt the data. Because distributing the keys is difficult, the keys are reused rather than regularly generating new ones. The regular use of the keys opens up the encryption process to attacks by mathematical methods... » read more

Dealing With Sub-Threshold Variation


Chipmakers are pushing into sub-threshold operation in an effort to prolong battery life and reduce energy costs, adding a whole new set of challenges for design teams. While process and environmental variation long have been concerns for advanced silicon process nodes, most designs operate in the standard “super-threshold” regime. Sub-threshold designs, in contrast, have unique variatio... » read more

← Older posts Newer posts →