FinFETs Give Way To Gate-All-Around


When they were first commercialized at the 22 nm node, finFETs represented a revolutionary change to the way we build transistors, the tiny switches in the “brains” of a chip. As compared to prior planar transistors, the fin, contacted on three sides by the gate, provides much better control of the channel formed within the fin. But, finFETs are already reaching the end of their utility as... » read more

Manufacturing Bits: Nov. 17


Intel’s gate-all-around FETs At the upcoming IEEE International Electron Devices Meeting (IEDM), Intel is expected to present papers on its efforts to develop gate-all-around transistors. One paper from Intel describes a more conventional gate-all-around transistor technology called a nanosheet FET. Another paper involves a next-generation NMOS-on-PMOS nanoribbon transistor technology. (F... » read more

Finding Defects With E-Beam Inspection


Several companies are developing or shipping next-generation e-beam inspection systems in an effort to reduce defects in advanced logic and memory chips. Vendors are taking two approaches with these new e-beam inspection systems. One is a more traditional approach, which uses a single-beam e-beam system. Others, meanwhile, are developing newer multi-beam technology. Both approaches have thei... » read more

Atomic Layer Etch Expands To New Markets


The semiconductor industry is developing the next wave of applications for atomic layer etch (ALE), hoping to get a foothold in some new and emerging markets. ALE, a next-generation etch technology that removes materials at the atomic scale, is one of several tools used to process advanced devices in a fab. ALE moved into production for select applications around 2016, although the technolog... » read more

Challenges In Stacking, Shrinking And Inspecting Next-Gen Chips


Rick Gottscho, CTO of Lam Research, sat down with Semiconductor Engineering to discuss memory and equipment scaling, new market demands, and changes in manufacturing being driven by cost, new technologies, and the application of machine learning. What follows are excerpts of that conversation. SE: We have a lot of different memory technologies coming to market. What's the impact of that? ... » read more

An Inside Look At Testing’s Leading Edge


Mike Slessor, president and CEO of FormFactor, sat down with Semiconductor Engineering to discuss testing of AI and 5G chips, and why getting power into a chip for testing is becoming more difficult at each new node. SE: How does test change with AI chips, where you've got massive numbers of accelerators and processors developed at 7 and 5nm? Slessor: A lot of the AI stuff that we've been... » read more

Metrology Challenges For Gate-All-Around


Metrology is proving to be a major challenge for those foundries working on processes for gate-all-around FETs at 3nm and beyond. Metrology is the art of measuring and characterizing structures in devices. Measuring and characterizing structures in devices has become more difficult and expensive at each new node, and the introduction of new types of transistors is making this even harder. Ev... » read more

Making Chips At 3nm And Beyond


Select foundries are beginning to ramp up their new 5nm processes with 3nm in R&D. The big question is what comes after that. Work is well underway for the 2nm node and beyond, but there are numerous challenges as well as some uncertainty on the horizon. There already are signs that the foundries have pushed out their 3nm production schedules by a few months due to various technical issu... » read more

Power Management Becomes Top Issue Everywhere


Power management is becoming a bigger challenge across a wide variety of applications, from consumer products such as televisions and set-top-boxes to large data centers, where the cost of cooling server racks to offset the impact of thermal dissipation can be enormous. Several years ago, low-power design was largely relegated to mobile devices that were dependent on a battery. Since then, i... » read more

Moving To GAA FETs


How do you measure the size of a transistor? Is it the gate length, or the distance between the source and drain contacts? For planar transistors, the two values are approximately the same. The gate, plus a dielectric spacer, fits between the source and drain contacts. The contact pitch, limited by the smallest features that the lithography process can print, determines how many transistors ... » read more

← Older posts