System Bits: Feb. 11


Modeling computer vision on human vision University of Michigan scientists used digital foveation technology to render images that are more comprehensible to machine vision systems, while also reducing energy consumption by 80%. The effect is achieved by manipulating a camera’s firmware. “It'll make new things and things that were infeasible before, practical,” Professor Robert Dick s... » read more

System Bits: Jan. 29


Quantum physics make hybrid semiconductors glow Hybrid semiconducting materials have quantum properties capable of bringing significant changes to light-emitting diode lighting and monitors, along with photovoltaic solar cells, researchers at the Georgia Institute of Technology report. Physical chemists worked with halide organic-inorganic perovskite (HOIP), which combines a crystal lattice wi... » read more

Power/Performance Bits: Jan. 14


Optical memory Researchers at the University of Oxford, University of Exeter, and University of Münster propose an all-optical memory cell that can store more optical data, 5 bits, in a smaller space than was previously possible on-chip. The optical memory cell uses light to encode information in the phase change material Ge2Sb2Te5. A laser causes the material to change between ordered and... » read more

Power/Performance Bits: Dec. 18


Solar storage Engineers at MIT, Georgia Institute of Technology, and the National Renewable Energy Laboratory designed a system to store renewable energy in vast amounts and deliver it back to the grid when power generation is low. The system stores excess electricity from solar or wind installations as heat using tanks of white-hot molten silicon, and then converts the light from the glowi... » read more

Manufacturing Bits: Oct. 23


3D stacked finFETs At the upcoming 2018 IEEE International Electron Devices Meeting (IEDM), Imec is expected to present a paper on a 3D stacked finFET architecture. IEDM is slated from Dec. 1-5 in San Francisco. Imec’s technology is based what on the R&D organization calls sequential integration. Another R&D organization, Leti, calls it 3D monolithic integration. Regardless, the idea... » read more

System Bits: Aug. 28


Characterizing quantum computers To accelerate and simplify the imposing task of diagnosing quantum computers, a Rice University computer scientist and his colleagues have proposed a method to do just this. The development of a nonconventional method as a diagnostic tool for powerful, next-generation computers that depend on the spooky actions of quantum bits — aka qubits — which are sw... » read more

The Chiplet Race Begins


Momentum is building for the development of advanced packages and systems using so-called chiplets, but the technology faces some challenges in the market. A group led by DARPA, as well as Marvell, zGlue and others are pursuing chiplet technology, which is a different way of integrating multiple dies in a package or system. In fact, the Defense Advanced Research Projects Agency (DARPA), part... » read more

Power/Performance Bits: April 24


Waste heat to power Engineers at the University of California, Berkeley, developed a thin-film system that can be applied to electronics to turn waste heat into energy. The thin-film system uses pyroelectric energy conversion, which is well suited for tapping into waste-heat energy supplies below 100 degrees Celsius, called low-quality waste heat. In particular, the technology might be part... » read more

Manufacturing Bits: Nov. 14


GaN for electric cars Leti is coordinating a new European project to improve the drivetrain in electric vehicles. The so-called ModulED project will focus on the development of gallium nitride (GaN) technology for electric vehicles. The goal is to use power-based GaN devices for the motor, enabling a change from direct current to alternating current. The three-year, €7.2 million proje... » read more

Power/Performance Bits: Oct. 24


Molecular storage Chemists at the Institut Charles Sadron and Aix-Marseille University used mass spectrometry to read several bytes of data recorded on the molecular scale with synthetic polymers, setting a new benchmark for the amount of data stored as a sequence of molecular units (monomers) that can be read. Polymers have great potential since, to record a bit, their component monomers r... » read more

← Older posts Newer posts →