Power/Performance Bits: June 13


Theoretical all-carbon circuits Engineers at the University of Texas at Dallas, the University of Illinois at Urbana-Champaign, the University of Central Florida, and Northwestern University designed a novel computing system made solely from carbon. "The concept brings together an assortment of existing nanoscale technologies and combines them in a new way," said Dr. Joseph S. Friedman, ass... » read more

Power/Performance Bits: May 16


Chaos-based IC Researchers at North Carolina State University and the College of Wooster developed a three transistor nonlinear, chaos-based integrated circuit combining digital and analog components, which they hope can improve computational power by enabling processing of a larger number of inputs. In chaos-based, nonlinear circuits, one circuit can perform multiple computations instead... » read more

System Bits: May 9


Graphene adopts exotic electronic states In a platform that may be used to explore avenues for quantum computing, MIT researchers have found that a flake of graphene, when brought in close proximity with two superconducting materials, can inherit some of those materials’ superconducting qualities. They reminded that in normal conductive materials such as silver and copper, electric curren... » read more

Power/Performance Bits: April 18


Cooling hotspots Engineers at Duke University and Intel developed a technology to cool hotspots in high-performance electronics. The new technology relies on a vapor chamber made of a super-hydrophobic floor with a sponge-like ceiling. When placed beneath operating electronics, moisture trapped in the ceiling vaporizes beneath emerging hotspots. The vapor escapes toward the floor, taking hea... » read more

System Bits: Jan. 24


Modified carbon nanotubes used to track individual cells Carbon nanotubes come to the forefront of scientific research yet again, this time for serving as the most sensitive molecular sensing platforms available. MIT engineers believe they have designed sensors that, for the first time, can detect single protein molecules as they are secreted by cells or even a single cell. The sensors that... » read more

Power/Performance Bits: Dec. 13


3D porous microsupercapacitors A research team from the King Abdullah University of Science and Technology (KAUST) developed an integrated microsupercapacitor targeted at self-powered system applications where the power source may be intermittent, such as sensors for wearables, security, and structural health monitoring. The key to the microsupercapacitors is vertically-scaled three-dimen... » read more

Power/Performance Bits: Oct. 18


Speeding up memory with T-rays Scientists at the Moscow Institute of Physics and Technology (MIPT), the University of Regensburg in Germany, Radboud University Nijmegen in the Netherlands, and Moscow Technological University proposed a way to improve the performance of memory through using T-waves, or terahertz radiation, as a means of resetting memory cells. This process is several thousand... » read more

Power/Performance Bits: Aug. 30


Scalable data center chip Princeton University researchers designed a new scalable chip specifically for data centers and massive computing systems. The team believes the chip, called Piton, can substantially increase processing speed while slashing energy needs. The chip architecture is scalable; designs can be built that go from a dozen cores to several thousand. Also, the architecture ... » read more

Power/Performance Bits: July 26


Flexible MRAM Researchers from the National University of Singapore, Yonsei University, Ghent University and Singapore's Institute of Materials Research and Engineering embedded a magnetic memory chip on a plastic material, flexible enough to be bent into a tube. The new device operates on magnetoresistive random access memory (MRAM), which uses a magnesium oxide (MgO)-based magnetic tunn... » read more

Power/Performance Bits: May 31


Solar thermophotovoltaics A team of MIT researchers demonstrated a device based on a method that enables solar cells to break through a theoretically predicted ceiling on how much sunlight they can convert into electricity. Since 1961 it has been known that there is an absolute theoretical limit, called the Shockley-Queisser Limit, to how efficient traditional solar cells can be in their ... » read more

← Older posts