System Bits: Dec. 17


Simple, Inexpensive Graphene Treatment Could Unleash New Uses To help realize the promise of graphene in electronics, solar power, and sensors, researchers from MIT and UC Berkeley have created what they said is a simple, inexpensive treatment that they believe may help realize the potential of the material. While pure graphene lacks some key properties needed for electronic devices, modify... » read more

Manufacturing Bits: Dec. 3


Animal robots invade London The London Science Museum will premiere U-CAT, an underwater robot turtle designed to penetrate shipwrecks. In the exhibit, the museum will also showcase several robots that resemble an eel, bat, cheetah cub, tumbleweed, tuna, salamander and other creatures. Meanwhile, built by the Centre for Biorobotics at Tallinn University of Technology, U-CAT’s locomotio... » read more

System Bits: Nov. 5


Silicon Photonics And Graphene The industry is looking towards silicon photonics that will increase the rate at which electronic systems can communicate with each other and reduce power consumption. Researchers at MIT, Columbia University and IBM’s T. J. Watson Research Center are already a few steps beyond the traditional attempts to build optical components using materials such as Gallium ... » read more

System Bits: Oct. 22


Untangled nanotubes Carbon nanotubes are lightweight, strong and conduct electricity, which make them ideal components in new electronics devices, such as tablet computers and touchscreen phones, but cannot be used without being separated out from their natural tangled state. Researchers from Imperial College London have developed a way to unravel and apply carbon nanotubes in the laboratory a... » read more

Power/Performance Bits: Oct. 8


How light interacts with gold nanostructures With the potential to possibly increase the efficiency of solar cells and photo detectors, University of Manchester researchers have discovered that graphene can be used to investigate how light interacts with nano-antennas. The team, which also included researchers from Freie Universität Berlin and Imperial College London, have shown that graph... » read more

Experts At The Table: Process Technology Challenges


By Mark LaPedus Semiconductor Manufacturing & Design sat down to discuss future transistor, process and manufacturing challenges with Subramani Kengeri, vice president of advanced technology architecture at GlobalFoundries; Carlos Mazure, chief technical officer at Soitec; Raj Jammy, senior vice president and general manager of the Semiconductor Group at Intermolecular; and Girish Dixit, v... » read more

Power/Performance Bits: Sept. 10


Using DNA to assemble transistors from graphene Graphene is a sheet of carbon atoms arrayed in a honeycomb pattern, just a single atom thick. It could be a better semiconductor than silicon – if we could fashion it into ribbons 20 to 50 atoms wide. Could DNA help? Stanford chemical engineering professor Zhenan Bao, believes it could. Bao and her team of researchers hope to solve a problem... » read more

Power/Performance Bits: August 20


Rechargeable flow battery for cheaper, large-scale energy storage In a creation that may eventually enable cheaper, large-scale energy storage, MIT researchers have engineered a new rechargeable flow battery that doesn’t rely on expensive membranes to generate and store electricity. According to the researchers, the palm-sized prototype generates three times as much power per square centi... » read more

Grappling With Graphene


By Brian Fuller Silicon CMOS is a tough act to follow. The workhorse building block for the world’s electronics has been delivering for system designers for a half century. Despite hand-wringing over its apparent scalability limits, it shows only vague signs of slowing down. For nearly as many years, it seems, the next great material or alternative to silicon CMOS has popped into the indu... » read more

Newer posts →