A Polymer-Free Technique For Assembling Van Der Waals Heterostructures Using Flexible Si Nitride Membranes


A technical paper titled “Clean assembly of van der Waals heterostructures using silicon nitride membranes” was published by researchers at University of Manchester, Imperial College London, National Institute for Materials Science (Japan), and University of Lancaster. Abstract Van der Waals heterostructures are fabricated by layer-by-layer assembly of individual two-dimensional mater... » read more

Research Bits: November 21


MoS2 in-memory processor Researchers from École Polytechnique Fédérale de Lausanne (EPFL) developed a large-scale in-memory processor using the 2D semiconductor material, molybdenum disulfide (MoS2), for the channel material in the more than 1,000 transistors that comprise the processor. The MoS2-based in-memory processor is dedicated to vector-matrix multiplication, key for digital signal ... » read more

Discovering Orbital Multiferroicity in Pentalayer Rhombohedral Graphene (MIT)


A technical paper titled “Orbital Multiferroicity in Pentalayer Rhombohedral Graphene” was published by researchers at Massachusetts Institute of Technology. Abstract (partial): "Ferroic orders describe spontaneous polarization of spin, charge, and lattice degrees of freedom in materials. Materials featuring multiple ferroic orders, known as multiferroics, play important roles in multi-fu... » read more

Friction Between Single Layer Graphene And An Atomic Force Microscope Tip


A technical paper titled “Dynamically tuning friction at the graphene interface using the field effect” was published by researchers at University of Illinois Urbana-Champaign and University of California Irvine. Abstract: "Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwant... » read more

Wafer-Scale CMOS-Integrated GFET Arrays With High Yield And Uniformity Designed For Biosensing Applications


A technical paper titled “Wafer-Scale Graphene Field-Effect Transistor Biosensor Arrays with Monolithic CMOS Readout” was published by researchers at VTT Technical Research Centre of Finland and Graphenea Semiconductor SLU. Abstract: "The reliability of analysis is becoming increasingly important as point-of-care diagnostics are transitioning from single-analyte detection toward multiplex... » read more

Neuromorphic Computing: Graphene-Based Memristors For Future AI Hardware From Fabrication To SNNs


A technical paper titled “A Review of Graphene-Based Memristive Neuromorphic Devices and Circuits” was published by researchers at James Cook University (Australia) and York University (Canada). Abstract: "As data processing volume increases, the limitations of traditional computers and the need for more efficient computing methods become evident. Neuromorphic computing mimics the brain's... » read more

Research Bits: August 1


Thinner, tougher heat flux sensors Researchers from the Department of Physics at the University of Tokyo have designed a heat flux sensor that can measure heat flux — the amount of heat that passes through a material — using a manufacturable, flexible thin film with circuits etched in a way that increases the anomalous Nernst effect (ANE). ANE turns heat into an electrical signal using ... » read more

Antenna For Nanoscale Light Source By Placing The TMD Outside The Tunnelling Pathway


A technical paper titled "Exciton-assisted electron tunnelling in van der Waals heterostructures" was published by researchers at ETH Zürich, The Barcelona Institute of Science and Technology, Swiss Federal Laboratories for Materials Science and Technology, National Institute for Materials Science, University of Basel, and Institució Catalana de Recerca i Estudis Avançats (ICREA). Abstract:... » read more

Research Bits: July 5


UTe2 breakthrough for quantum computing Scientists from the Macroscopic Quantum Matter Group laboratory at the University College Cork (UCC) in Ireland discovered a spatially modulating superconducting state in the superconductor uranium ditelluride (UTe2) that could be useful as in topological quantum computing. Using a powerful quantum microscope, the team found that the some of the electro... » read more

Research Bits: May 16


Germanium-tin transistor Scientists at Forschungszentrum Jülich, CEA-Leti, University of Leeds, Leibniz Institute for High Performance Microelectronics, and RWTH Aachen University fabricated a new type of transistor from a germanium-tin alloy. Charge carriers can move faster in the material than in silicon or germanium, which enables lower voltages in operation. “The germanium–tin syst... » read more

← Older posts Newer posts →