2.5D Integration: Big Chip Or Small PCB?


Defining whether a 2.5D device is a printed circuit board shrunk down to fit into a package, or is a chip that extends beyond the limits of a single die, may seem like hair-splitting semantics, but it can have significant consequences for the overall success of a design. Planar chips always have been limited by size of the reticle, which is about 858mm2. Beyond that, yield issues make the si... » read more

The Seven Pillars Of IC Package Physical Design


Today’s heterogeneously integrated semiconductor packages represent a breakthrough technology that enables dramatic increases in bandwidth and performance with reduced power and cost compared to what can be currently achieved in traditional monolithic SoC designs. Figure 1. A heterogeneously integrated device with 47 chiplets. (Image Source: Intel) The evolving landscape of packagin... » read more

IC Package Physical Design Best Practices


Historically IC package design has been a relatively simple task which allowed the die bumps to be fanned out on a package substrate to a floorplan geometry suitable for connecting to a printed circuit board (PCB). But today the industry is moving to disaggregation of traditional monolithic SoC functions into chiplets often interfaced with local high-speed memory to avoid silicon reticle limits... » read more

What’s Changing In DRAM


More data requires more processing and more storage, because that data needs to be stored somewhere. What’s changing is that it’s no longer just about SRAM and DRAM. Today, multiple types of DRAM are used in the same devices, each with its own set of tradeoffs. C.S. Lin, marketing executive at Winbond, talks about the potential problems that causes, including mismatches in latency, and high... » read more

The Future Of Memory


Experts at the Table: Semiconductor Engineering sat down to talk about the impact of off-chip memory on power and heat, and what can be done to optimize performance, with Frank Ferro, group director, product management at Cadence; Steven Woo, fellow and distinguished inventor at Rambus; Jongsin Yun, memory technologist at Siemens EDA; Randy White, memory solutions program manager at Keysight; a... » read more

SRAM’s Role In Emerging Memories


Experts at the Table — Part 3: Semiconductor Engineering sat down to talk about AI, the latest issues in SRAM, and the potential impact of new types of memory, with Tony Chan Carusone, CTO at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part one of this conversation can be ... » read more

HBM3 Memory: Break Through to Greater Bandwidth


Delivering unrivaled memory bandwidth in a compact, high-capacity footprint, has made HBM the memory of choice for AI/ML and other high-performance computing workloads. HBM3 as the latest generation of the standard raises data rates to 6.4 Gb/s and promises to scale even higher. The Rambus HBM3 controller provides industry-leading support of the extended roadmap for HBM3 with performance to 9.6... » read more

The Uncertain Future Of In-Memory Compute


Experts at the Table — Part 2: Semiconductor Engineering sat down to talk about AI and the latest issues in SRAM with Tony Chan Carusone, chief technology officer at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part one of this conversation can be found here and part 3 is h... » read more

Using In-Chip Monitoring And Deep Data Analytics For High Bandwidth Memory (HBM) Reliability And Safety


Since its introduction in 2014, High Bandwidth Memory (HBM) has been poised to address the growing demand for high-performance, high capacity, and low latency memories required by High-Performance Computing (HPC), high-performance graphic processors (GPU), and artificial intelligence (AI). Since then, bandwidth and capacity requirements have increased with each new generation: HBM2, HBM2e and n... » read more

Enabling Scalable Accelerator Design On Distributed HBM-FPGAs (UCLA)


A technical paper titled “TAPA-CS: Enabling Scalable Accelerator Design on Distributed HBM-FPGAs” was published by researchers at University of California Los Angeles. Abstract: "Despite the increasing adoption of Field-Programmable Gate Arrays (FPGAs) in compute clouds, there remains a significant gap in programming tools and abstractions which can leverage network-connected, cloud-scale... » read more

← Older posts Newer posts →