DRAM Choices Becoming Central Design Considerations


Chipmakers are paying much closer attention to various DRAM options as they grapple with what goes on-chip or into a package, elevating attached memory to a critical design element that can affect system performance, power, and cost. These are increasingly important issues to sort through with a number of tradeoffs, but the general consensus is that to reach the higher levels of performance ... » read more

Choosing The Right Server Interface Architectures For High Performance Computing


The largest bulk and cost of a modern high-performance computing (HPC) installation involves the acquisition or provisioning of many identical systems, interconnected by one or more networks, typically Ethernet and/or InfiniBand. Most HPC experts know that there are many choices between different server manufacturers and the options of form factor, CPU, RAM configuration, out of band management... » read more

Clocks Getting Skewed Up


At a logical level, synchronous designs are very simple and the clock just happens. But the clocking network is possibly the most complex in a chip, and it's fraught with the most problems at the physical level. To some, the clock is the AC power supply of the chip. To others, it is an analog network almost beyond analysis. Ironically, there are no languages to describe clocking, few tools t... » read more

CXL and OMI: Competing or Complementary?


System designers are looking at any ideas they can find to increase memory bandwidth and capacity, focusing on everything from improvements in memory to new types of memory. But higher-level architectural changes can help to fulfill both needs, even as memory types are abstracted away from CPUs. Two new protocols are helping to make this possible, CXL and OMI. But there is a looming question... » read more

Chiplets Enter The Supercomputer Race


Several entities from various nations are racing each other to deliver and deploy chiplet-based exascale supercomputers, a new class of systems that are 1,000x faster than today’s supercomputers. The latest exascale supercomputer CPU and GPU designs mix and match complex dies in advanced packages, adding a new level of flexibility and customization for supercomputers. For years, various na... » read more

A Practical Approach To DFT For Large SoCs And AI Architectures, Part II


By Rahul Singhal and Giri Podichetty Part I of this article discusses the design-for-test (DFT) challenges of AI designs and strategies to address them at the die level. This part focuses on the test requirements of AI chips that integrate multiple dies and memories on the same package. Why 2.5D/3D chiplet-based designs for AI SoCs? Many semiconductor companies are adopting chiplet-based d... » read more

It’s Official: HBM3 Dons The Crown Of Bandwidth King


With the publishing of the HBM3 update to the High Bandwidth Memory (HBM) standard, a new king of bandwidth is crowned. The torrid performance demands of advanced workloads, with AI/ML training leading the pack, drive the need for ever faster delivery of bits. Memory bandwidth is a critical enabler of computing performance, thus the need for the accelerated evolution of the standard with HBM3 r... » read more

Future Challenges For Advanced Packaging


Michael Kelly, vice president of advanced packaging development and integration at Amkor, sat down with Semiconductor Engineering to talk about advanced packaging and the challenges with the technology. What follows are excerpts of that discussion. SE: We’re in the midst of a huge semiconductor demand cycle. What’s driving that? Kelly: If you take a step back, our industry has always ... » read more

Setting Ground Rules For 3D-IC Designs


Experts at the Table: Semiconductor Engineering sat down to discuss the changes in design tools and methodologies needed for 3D-ICs, with Sooyong Kim, director and product specialist for 3D-IC at Ansys; Kenneth Larsen, product marketing director at Synopsys; Tony Mastroianni, advanced packaging solutions director at Siemens EDA; and Vinay Patwardhan, product management group director at Cadence... » read more

Reliability Concerns Shift Left Into Chip Design


Demand for lower defect rates and higher yields is increasing, in part because chips are now being used for safety- and mission-critical applications, and in part because it's a way of offsetting rising design and manufacturing costs. What's changed is the new emphasis on solving these problems in the initial design. In the past, defectivity and yield were considered problems for the fab. Re... » read more

← Older posts Newer posts →