New Tradeoffs In Leading-Edge Chip Design


Device design begins with the anticipated workload. What is it actually supposed to do? What resources — computational units, memory, sensors — are available? Answering these questions and developing the functional architecture are the first steps in a new design — well before committing it to silicon, said Tim Kogel, senior director of technical product management at Synopsys. Yet eve... » read more

Large-Scale VFETs With Ultra-Short Channel Length And High Performance


A new technical paper titled "Large-scale sub-5-nm vertical transistors by van der Waals integration" was published by researchers at Hunan University. "Here, we demonstrate a layer-by-layer transfer process of large-scale indium gallium zinc oxide (IGZO) semiconductor arrays and metal electrodes, and realize large-scale VFETs with ultra-short channel length and high device performance," sta... » read more

Benefits Of The Ultra-Low Leakage Currents from IGZO TFTs For Neuromorphic Applications


A new technical paper titled "A tunable multi-timescale Indium-Gallium-Zinc-Oxide thin-film transistor neuron towards hybrid solutions for spiking neuromorphic applications" was published by researchers at imec, CSIC Universidad de Sevilla, and Sungkyunkwan University. Abstract "Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such ... » read more

Reasons To Know IGZO


Interest in monolithic 3D integration is driven by both compute-in-memory applications and a more general need for increased circuit density. Compute-in-memory architectures seek to reduce the power requirements of machine learning workloads, which are dominated by the movement of data between memory and logic components. Even in conventional architectures, though, placing high-density, high-ba... » read more

Using Palladium To Address Contact Issues Of Buried Oxide Thin Film Transistors


A new technical paper titled "Approach to Low Contact Resistance Formation on Buried Interface in Oxide Thin-Film Transistors: Utilization of Palladium-Mediated Hydrogen Pathway" was published by researchers at Tokyo Institute of Technology and National Institute for Materials Science (NIMS). Abstract "Amorphous oxide semiconductors (AOSs) with low off-currents and processing temperatures... » read more

Flexible Microprocessors (FlexiCores)- Natively flexible 4-bit and 8-bit microprocessors optimized for low footprint and yield


New research paper titled "FlexiCores: low footprint, high yield, field reprogrammable flexible microprocessors" from researchers at University of Illinois and PragmatIC Semiconductor. Abstract "Flexible electronics is a promising approach to target applications whose computational needs are not met by traditional silicon-based electronics due to their conformality, thinness, or cost requir... » read more

Will Monolithic 3D DRAM Happen?


As DRAM scaling slows, the industry will need to look for other ways to keep pushing for more and cheaper bits of memory. The most common way of escaping the limits of planar scaling is to add the third dimension to the architecture. There are two ways to accomplish that. One is in a package, which is already happening. The second is to sale the die into the Z axis, which which has been a to... » read more

Manufacturing Bits: May 26


7-level nanosheets The 2020 Symposia on VLSI Technology & Circuits for the first time will be held as a virtual conference. The event, to be held from June 15-18, is organized around the theme “The Next 40 Years of VLSI for Ubiquitous Intelligence.” Among the papers at the event include advanced nanosheet transistors, 3D stacked memory devices and even an artificial iris. At the ... » read more

Compute-In Memory Accelerators Up-End Network Design Tradeoffs


An explosion in the amount of data, coupled with the negative impact on performance and power for moving that data, is rekindling interest around in-memory processing as an alternative to moving data back and forth between the memory and the processor. Compute-in-memory (CIM) arrays based on either conventional memory elements like DRAM and NAND flash, as well as emerging non-volatile memori... » read more