Power/Performance Bits: Oct. 6


Waste plastic supercapacitor Researchers from the University of California Riverside found a way to recycle waste plastic into energy storage devices. The work focused on polyethylene terephthalate plastic waste, or PET, which is found in soda bottles and many other consumer products. The researchers first dissolved pieces of PET plastic bottles in a solvent. Using electrospinning, they fab... » read more

Power/Performance Bits: Aug. 13


Smartphone virus scanner Scientists at the University of Tokyo built a new type of virus scanner for smartphones: to detect diseases, not malware. The handheld, portable device uses a smartphone to help scan biological samples for influenza virus. The virus scanner is about the size of a brick, with a slot to position a smartphone such that its camera looks through a lens. Inside the device... » read more

System Bits: April 8


Computers trained to design materials Researchers in the University of Missouri’s College of Engineering are applying deep learning technology to educate high-performance computers in the field of materials science, with the goal of having those computers design billions of potential materials. “You can train a computer to do what it would take many years for people to otherwise do,” ... » read more

Manufacturing Bits: Jan. 22


Open-source CVD Boise State University has developed an inexpensive chemical vapor deposition (CVD) system to enable the growth of two-dimensional (2D) materials. Using open-source designs and off-the-shelf components, researchers have developed an automated CVD system for $30,000 in hardware costs, according to Boise State in the journal PLoS One. 2D materials could enable a new class ... » read more

Manufacturing Bits: Nov. 27


New kilogram definition After years of debate and scientific work, a group of delegates from 60 countries have voted to redefine four key unit measurements—the kilogram, electric current (ampere), temperature (kelvin), and the amount of substance (mole). The vote took place at the recent 26th General Conference of Weights and Measures. Hosted by the International Bureau of Weights and Mea... » read more

Power/Performance Bits: Oct. 18


Speeding up memory with T-rays Scientists at the Moscow Institute of Physics and Technology (MIPT), the University of Regensburg in Germany, Radboud University Nijmegen in the Netherlands, and Moscow Technological University proposed a way to improve the performance of memory through using T-waves, or terahertz radiation, as a means of resetting memory cells. This process is several thousand... » read more

System Bits: June 21


Faster running parallel programs, one-tenth the code MIT researchers reminded that computer chips have stopped getting faster and that for the past 10 years, performance improvements have come from the addition of cores. In theory, they said, a program on a 64-core machine would be 64 times as fast as it would be on a single-core machine but it rarely works out that way. Most computer programs... » read more

Power/Performance Bits: May 17


Shrinking perovskites Researchers from Imperial College London, Oxford University, Diamond Light Source, Pohang University of Science and Technology in Korea, and Rutgers University have discovered a material that can be chemically tailored to either expand or contract in a precise way and over a wide temperature range. This could lead to new composite materials that do not expand when heate... » read more

System Bits: April 19


Debugging web apps MIT researchers reported that they’ve developed a system that can quickly comb through tens of thousands of lines of application code to find security flaws by exploiting some peculiarities of the Ruby on Rails web programming framework. The team said that in tests on 50 popular web applications written using Ruby on Rails, the system found 23 previously undiagnosed sec... » read more

System Bits: Jan. 5


Faster quantum dot entanglement Due to entanglement between distant quantum objects being an important ingredient for future information technologies, ETH Zurich researchers have developed a method with which such states can be created a thousand times faster than before. [caption id="attachment_24629" align="alignright" width="300"] In two entangled quantum objects the spins are in a super... » read more

← Older posts Newer posts →