Custom Designs, Custom Problems


Semiconductor Engineering sat down to discuss power optimization with Oliver King, CTO at Moortec; João Geada, chief technologist at Ansys; Dino Toffolon, senior vice president of engineering at Synopsys; Bryan Bowyer, director of engineering at Mentor, a Siemens Business; Kiran Burli, senior director of marketing for Arm's Physical Design Group; Kam Kittrell, senior product management group d... » read more

Liability And Reliability


As systems vendors accelerate the development of their own architectures, semiconductor companies across the supply chain are getting a seat at the table for architecting the engines in those systems. Rather than competing for a socket, they are directly involved in strategizing the optimal solution that can make a systems vendor or OEM more competitive or far more efficient. That gives the dev... » read more

Sensors, Data And Machine Learning


Strategies for building reliability into chips and systems are beginning to shift as more sensors are added into these devices and machine learning is applied to that data. In the past, system monitoring relied heavily on MEMS devices for things like acceleration, temperature and positioning (gyroscopes). While those devices are still important, in the past couple years there has been an exp... » read more

Power Becomes Bigger Concern For Embedded Processors


Power is emerging as the dominant concern for embedded processors even in applications where performance is billed as the top design criteria. This is happening regardless of the end application or the process node. In some high-performance applications, power density and thermal dissipation can limit how fast a processor can run. This is compounded by concerns about cyber and physical secur... » read more

Reliability Challenges Grow For 5/3nm


Ensuring that chips will be reliable at 5nm and 3nm is becoming more difficult due to the introduction of new materials, new transistor structures, and the projected use of these chips in safety- and mission-critical applications. Each of these elements adds its own set of challenges, but they are being compounded by the fact that many of these chips will end up in advanced packages or modul... » read more

More Data, More Problems In Automotive


The race toward increasing levels of autonomy is being hampered by competitive concerns over sharing data across the automotive supply chain. Pushing past the initial ADAS levels into full autonomy is expected to take more than a decade, but the infrastructure for those systems, and making sure all assisted and autonomous vehicles work with other vehicles, is under development today. Still, ... » read more

Reliability At 5nm And Below


The best way to figure out how a chip or package will age is to bake it in an oven, heat it in a pressure cooker, and stick it in a freezer. Those are all standard methods to accelerate physical effects and the effects of aging, but it's not clear they will continue working as chips shrink to 5nm and 3nm, or as they are included in multi-die packages. Extending any of those kitchen-like appr... » read more

Planning For Failures In Automotive


The automotive industry is undergoing some fundamental shifts as it backs away from the traditional siloed approach to one of graceful failure, slowing the evolution to fully autonomy and rethinking how to achieve its goals for a reasonable cost. For traditional automakers, this means borrowing some proven strategies from the electronics world rather than trying to evolve traditional automot... » read more

The Race For Better Computational Software


Anirudh Devgan, president of Cadence, sat down with Semiconductor Engineering to talk about computational software, why it's so critical at the edge and in AI systems, and where the big changes are across the semiconductor industry. What follows are excerpts of that conversation. SE: There is no consistent approach to how data will be processed at the edge, in part because there is no consis... » read more

Degradation Monitoring – From Vision to Reality


Reliability physics has historically focused on models for time-to-failure, but that approach is reaching its limit. Those models generally were developed using data gathered from very simple test structures that could be stressed to failure. Today, with electronics playing a such a critical role in our everyday life, failures are no longer an option. The underlying ICs being implemented call f... » read more

← Older posts