Research Bits: Nov. 5


Optical in-memory computing Researchers from the University of Pittsburgh, University of California Santa Barbara, University of Cagliari, and Institute of Science Tokyo propose a resonance-based photonic architecture which leverages the non-reciprocal phase shift in magneto-optical materials to implement photonic in-memory computing. “The materials we use in developing these cells have b... » read more

In Memory, At Memory, Near Memory: What Would Goldilocks Choose?


The children’s fairy tale of ‘Goldilocks and the Three Bears’ describes the adventures of Goldi as she tries to choose among three choices for bedding, chairs, and bowls of porridge. One meal is “too hot,” the other “too cold,” and finally one is “just right.” If Goldi were faced with making architecture choices for AI processing in modern edge/device SoCs, she would also face... » read more

A Precision-Optimized Fixed-Point Near-Memory Digital Processing Unit for Analog IMC (IBM and ETH Zurich)


A technical paper titled “A Precision-Optimized Fixed-Point Near-Memory Digital Processing Unit for Analog In-Memory Computing” was published by researchers at IBM Research Europe and IIS-ETH Zurich. Abstract: "Analog In-Memory Computing (AIMC) is an emerging technology for fast and energy-efficient Deep Learning (DL) inference. However, a certain amount of digital post-processing is requ... » read more

The Uncertain Future Of In-Memory Compute


Experts at the Table — Part 2: Semiconductor Engineering sat down to talk about AI and the latest issues in SRAM with Tony Chan Carusone, chief technology officer at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part one of this conversation can be found here and part 3 is h... » read more

Maximizing Edge Intelligence Requires More Than Computing


By Toshi Nishida, Avik W. Ghosh, Swaminathan Rajaraman, and Mircea Stan Commercial-off-the-shelf (COTS) components have enabled a commodity market for Wi-Fi-connected appliances, consumer products, infrastructure, manufacturing, vehicles, and wearables. However, the vast majority of connected systems today are deployed at the edge of the network, near the end user or end application, opening... » read more

Research Bits: November 6


Fast superatomic semiconductor Researchers from Columbia University created a fast and efficient superatomic semiconductor material based on rhenium called Re6Se8Cl2. Rather than scattering when they come into contact with phonons, excitons in Re6Se8Cl2 bind with phonons to create new quasiparticles called acoustic exciton-polarons. Although polarons are found in many materials, those in Re6Se... » read more

How Much AI Is Really Needed?


Tensor Core GPUs have created a generative AI model gold rush. Whether it’s helping students with math homework, planning a vacation, or learning to prepare a six-course meal, generative AI is ready with answers. But that's only one aspect of AI, and not every application requires it. AI — now an all-inclusive term, referring to the process of using algorithms to learn, predict, and make... » read more

Dealing With Heat In Near-Memory Compute Architectures


The explosion in data forcing chipmakers to get much more granular about where logic and memory are placed on a die, how data is partitioned and prioritized to utilize those resources, and what the thermal impact will be if they are moved closer together on a die or in a package. For more than a decade, the industry has faced a basic problem — moving data can be more resource-intensive tha... » read more

Will Monolithic 3D DRAM Happen?


As DRAM scaling slows, the industry will need to look for other ways to keep pushing for more and cheaper bits of memory. The most common way of escaping the limits of planar scaling is to add the third dimension to the architecture. There are two ways to accomplish that. One is in a package, which is already happening. The second is to sale the die into the Z axis, which which has been a to... » read more

Lowering Energy Per Bit


Energy is emerging as a focal point in chip and system design, but solving energy-related issues needs to be dealt with on a much broader scale than design teams typically see. Energy is the amount of power consumed over a period of time to perform a given task, but reducing energy is a lot different than reducing power. It affects everything from operational costs and system performance to ... » read more

← Older posts