Power/Performance Bits: Aug. 25


AI architecture optimization Researchers at Rice University, Stanford University, University of California Santa Barbara, and Texas A&M University proposed two complementary methods for optimizing data-centric processing. The first, called TIMELY, is an architecture developed for “processing-in-memory” (PIM). A promising PIM platform is resistive random access memory, or ReRAM. Whil... » read more

Power/Performance Bits: Aug. 18


Flexible, hole-filled films Researchers from Daegu Gyeongbuk Institute of Science and Technology (DGIST) and Hongik University propose a simple way to make flexible electrodes and thin film transistors last longer: adding lots of tiny holes. A major problem with flexible electronics is the formation of microscopic cracks after repeated bending which can cause the device to lose its conducti... » read more

Power/Performance Bits: March 3


Optimizing fiber networks Researchers at Chalmers University of Technology are working towards reducing the energy consumption of fiber optic communications before the amount of electricity required by the Internet becomes too great to manage. To improve overall efficiency, the team tackled several aspects of fiber optic cables. One of the major energy drains the team identified was the err... » read more

Manufacturing Bits: June 12


Elastic diamonds A group has developed a way to make elastic diamonds, enabling tiny diamond needles that can flex and stretch. Ulsan National Institute of Science and Technology (UNIST), the Massachusetts Institute of Technology (MIT), the City University of Hong Kong and Nanyang Technological University have developed a process that enables elastic diamonds. Elastic diamonds could one day... » read more