中文 English

Power/Performance Bits: Sept. 1


Cooling sensors with lasers Researchers at the University of Washington developed a way to cool a solid semiconductor sensor component with an infrared laser. The laser was able to cool the solid semiconductor by at least 20 degrees C, or 36 F, below room temperature. The device uses a cantilever, similar to a diving board, that can oscillate in response to thermal energy at room temperatur... » read more

Simulation Of Semiconductor Edge-Emitting Lasers


By Peter Hallschmid and Dylan McGuire The demand for photonics technology continues to grow with popular laser applications including semiconductor optical amplifiers (SOAs), Fabry-Perot (FP) devices and distributed feedback (DFB) lasers. The next episode of Ansys’ photonics webinar series outlines the latest Ansys Lumerical flows and products for simulating and generating compact mod... » read more

Power/Performance Bits: June 30


Up-converting lasers Researchers at the University of Pennsylvania developed a filter chip that can convert the output from low-cost lasers to have the same frequency noise as big, expensive lasers, making them suitable for applications such as LiDAR. The noise in a laser's frequency is an important indicator of quality. Low-quality, noisy lasers have more random variations, making them use... » read more

System Bits: July 30


A camera that sees around corners Researchers at Stanford University developed a camera system that can detect moving objects around a corner, looking at single particles of light reflected on a wall. “People talk about building a camera that can see as well as humans for applications such as autonomous cars and robots, but we want to build systems that go well beyond that,” said Gordon... » read more

System Bits: April 30


Future batteries could use a graphene sponge Researchers at Sweden’s Chalmers University of Technology devised a porous, sponge-like aerogel, made of reduced-graphene oxide, to serve as a freestanding electrode in the battery cell. This utilization has the potential to advance lithium sulfur batteries, which are said to possess a theoretical energy density about five times greater than lithi... » read more

Manufacturing Bits: Nov. 7


Making a superbeam Lawrence Livermore National Laboratory (LLNL) has combined several lasers to create what it calls a superbeam. The move represents a possible breakthrough in the arena. In theory, lasers can be combined. But the laser beams tend to pass through each other, thereby making a combined laser or a superbeam nearly impossible. With the help of plasma optics, however, LLNL ha... » read more

Power/Performance Bits: June 7


Tiny lasers on silicon A group of scientists from Hong Kong University of Science and Technology, the University of California, Santa Barbara, Sandia National Laboratories, and Harvard University were able to fabricate tiny lasers directly on silicon. To do this, they first had to resolve silicon crystal lattice defects to a point where the cavities were essentially equivalent to those gr... » read more

Manufacturing Bits: Nov. 25


Direct-write diamond patterning Purdue University has devised a new technique that uses a pulsing laser to create synthetic nanodiamond films and patterns on a graphite substrate. The ability to pattern diamond surfaces could one day be used to make chips, biosensors and fuel cells. In the lab, researchers devised a multi-layered film, which includes a layer of graphite topped with a glass ... » read more

System Bits: Nov. 4


Turning loss to gain By reexamining longstanding beliefs about the physics of lasers, Princeton University engineers have shown that by carefully restricting the delivery of power to certain areas within a laser could boost its output by many orders of magnitude. The team believes this finding could enable more sensitive and energy-efficient lasers, as well as potentially more control over ... » read more

Visiting The Future At CLEO


CLEO - The Conference on Lasers and Electro-Optics – presents the most comprehensive snapshot of laser and photonics applications. Presented by three professional societies (OSA, APS and IEEE Photonics) it was held in San Jose last month. While few of the topics covered are mainstream today for the semiconductor industry, one doesn’t have to look too far to find impact and potential synergi... » read more

← Older posts