Emergent magnetic monopoles isolated using quantum-annealing computer


Using D-Wave’s quantum-annealing computer, Los Alamos National Laboratory has shown that it’s possible to isolate magnetic monopoles. This research could one day enable future nanomagnets.   Abstract: "Artificial spin ices are frustrated spin systems that can be engineered, wherein fine tuning of geometry and topology has allowed the design and characterization of exotic eme... » read more

Manufacturing Bits: July 27


Merchant quantum processors Startup QuantWare has launched the world’s first merchant and off-the-shelf superconducting processor for quantum computers. QuantWare’s quantum processor unit (QPU), called Soprano, is a 5-qubit device. The QPU can be customized for various applications. The device is ideal for research institutions and university labs. Quantum computing is a hot topic. A... » read more

Manufacturing Bits: April 27


Next-gen neuromorphic computing The European Union (EU) has launched a new project to develop next-generation devices for neuromorphic computing systems. The project, called MeM-Scales, plans to develop a novel class of algorithms, devices, and circuits that reproduce multi-timescale processing of biological neural systems. The results will be used to build neuromorphic computing systems th... » read more

Manufacturing Bits: April 13


Error-correction DNA storage Los Alamos National Laboratory has developed a key technology that could one day pave the way towards DNA storage. Researchers have developed a technology called the Adaptive DNA Storage Codec (ADS Codex). ADS Codex is software that translates digital binary files into the four-letter genetic alphabet needed for DNA storage. Deoxyribonucleic acid (DNA) is a m... » read more

Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots


Researchers at Los Alamos National Laboratory and University of California Irvine used quantum dots to create transistors which can be assembled into functional logic circuits. “Potential applications of the new approach to electronic devices based on non-toxic quantum dots include printable circuits, flexible displays, lab-on-a-chip diagnostics, wearable devices, medical testing, smart im... » read more

Power/Performance Bits: Jan. 11


Quantum dot transistors Researchers at Los Alamos National Laboratory and University of California Irvine used quantum dots to create transistors which can be assembled into functional logic circuits. "Potential applications of the new approach to electronic devices based on non-toxic quantum dots include printable circuits, flexible displays, lab-on-a-chip diagnostics, wearable devices, me... » read more

Power/Performance Bits: Sept. 22


Drawing sensors on skin Researchers from the University of Houston and University of Chicago created an ink pen that can draw multifunctional sensors and circuits directly on skin. These "drawn-on-skin electronics" aim to provide more precise health data, free of the artifacts that are associated with wearable devices and flexible electronic patches. Caused when the sensor doesn't move prec... » read more

Power/Performance Bits: April 28


Flat microwave reflector Researchers from Los Alamos National Laboratory developed a new flat reflector for microwaves that could improve communications while providing a better form factor. It also breaks reciprocity, effectively turning it into a one-way mirror. The flat reflector can be reconfigured on the fly electronically, allowing it to be used for beam steering, customized focusing,... » read more

Manufacturing Bits: Oct. 9


World’s strongest silver A group has developed what researchers say is the world’s strongest silver. The silver demonstrated a hardness of 3.05 GPa, which is 42% stronger than the previous world record. The University of Vermont, Lawrence Livermore National Lab, the Ames Laboratory, Los Alamos National Laboratory and UCLA contributed to the work. Silver is an element with high electr... » read more

System Bits: Aug. 5


Algorithm could advance quantum computing Scientists at the Los Alamos National Laboratory report the development of a quantum computing algorithm that promises to provide a better understanding of the quantum-to-classical transition, enabling model systems for biological proteins and other advanced applications. “The quantum-to-classical transition occurs when you add more and more parti... » read more

← Older posts Newer posts →