Achieving Consistent RTL Power Accuracy


Are you struggling to accurately estimate RTL power consumption early in your design process? RTL power estimation can be inaccurate due to the complexity of the designs, the various power domains, and the use of multiple tools in the design process. Designers can make effective power-performance-area tradeoffs early by using a holistic methodology that includes both architectural and micro-arc... » read more

Improving Performance And Power With HBM3


HBM3 swings open the door to significantly faster data movement between memory and processors, reducing the power it takes to send and receive signals and boosting the performance of systems where high data throughput is required. But using this memory is expensive and complicated, and that likely will continue to be the case in the short term. High Bandwidth Memory 3 (HBM3) is the most rece... » read more

How The Electronics Industry Can Shape A More Sustainable, Energy-Efficient World


By Piyush Sancheti and Godwin Maben We’re already experiencing the effects of our world’s changing climate—devastating wildfires, prolonged droughts, torrential flooding, just to name a few examples. Global energy consumption is increasing, raising carbon dioxide levels and triggering extreme weather conditions. Two key forces driving these trends are the shift to hyperscale datacenter... » read more

Efficient Gated Clock Design Approach for LFSR


A technical paper titled "A Novel Clock Gating Approach for the Design of Low-Power Linear Feedback Shift Registers" was published by researchers at Università degli Studi di Catania, Italy. Abstract "This paper presents an efficient solution to reduce the power consumption of the popular linear feedback shift register by exploiting the gated clock approach. The power reduction with respec... » read more

Taking Power Much More Seriously


An increasing number of electronic systems are becoming limited by thermal issues, and the only way to solve them is by elevating energy consumption to a primary design concern rather than a last-minute optimization technique. The optimization of any system involves a complex balance of static and dynamic techniques. The goal is to achieve maximum functionality and performance in the smalles... » read more

Balancing Power And Heat In Advanced Chip Designs


Power and heat use to be someone else's problem. That's no longer the case, and the issues are spreading as more designs migrate to more advanced process nodes and different types of advanced packaging. There are a number of reasons for this shift. To begin with, there are shrinking wire diameters, thinner dielectrics, and thinner substrates. The scaling of wires requires more energy to driv... » read more

A Power-First Approach


It is becoming evidently clear that heat will be the limiter for the future of semiconductors. Already, large percentages of a chip are dark at any time, because if everything operated at the same time the amount of heat generated would exceed the ability of the chip and package to dissipate that energy. If we now start to contemplate stacking dies, where the ability to extract heat remains con... » read more

Designing A Better Clock Network


Laying the proper clock network architecture foundation makes all the difference for the best performance, power, and timing of a chip, particularly in advanced node SoCs packed with billions of transistors. Each transistor, which acts like a standard cell, needs a clock. An efficient clock network should ensure the switching transistors save power. In today’s advanced nodes, when a design... » read more

EVs Raise Energy, Power, And Thermal IC Design Challenges


The transition to electric vehicles is putting pressure on power grids to produce more energy and on vehicles to use that energy much more efficiently, creating a gargantuan set of challenges that will affect every segment of the automotive world, the infrastructure that supports it, and the chips that are required to make all of this work. From a semiconductor standpoint, improvements in th... » read more

Rethinking Machine Learning For Power


The power consumed by machine learning is exploding, and while advances are being made in reducing the power consumed by them, model sizes and training sets are increasing even faster. Even with the introduction of fabrication technology advances, specialized architectures, and the application of optimization techniques, the trend is disturbing. Couple that with the explosion in edge devices... » read more

← Older posts Newer posts →