DRAM Test And Inspection Just Gets Tougher


DRAM manufacturers continue to demand cost-effective solutions for screening and process improvement amid growing concerns over defects and process variability, but meeting that demand is becoming much more difficult with the rollout of faster interfaces and multi-chip packages. DRAM plays a key role in a wide variety of electronic devices, from phones and PCs to ECUs in cars and servers ins... » read more

Sweeping Changes For Leading-Edge Chip Architectures


Chipmakers are utilizing both evolutionary and revolutionary technologies to achieve orders of magnitude improvements in performance at the same or lower power, signaling a fundamental shift from manufacturing-driven designs to those driven by semiconductor architects. In the past, most chips contained one or two leading-edge technologies, mostly to keep pace with the expected improvements i... » read more

LPDDR5X: High Bandwidth, Power Efficient Performance For Mobile & Beyond


Looking back over recent history in the memory landscape, we can clearly see a trend of new applications growing sufficiently large enough to command the creation of new memory technologies tailored to their specific needs. We saw this with the creation of GDDR for graphics and later HBM for AI/ML applications. Low-Power Double Data Rate (LPDDR) emerged as a specialized memory designed for mobi... » read more

Choosing The Correct High-Bandwidth Memory


The number of options for how to build high-performance chips is growing, but the choices for attached memory have barely budged. To achieve maximum performance in automotive, consumer, and hyperscale computing, the choices come down to one or more flavors of DRAM, and the biggest tradeoff is cost versus speed. DRAM remains an essential component in any of these architectures, despite years ... » read more

How Memory Design Optimizes System Performance


Exponential increases in data and demand for improved performance to process that data has spawned a variety of new approaches to processor design and packaging, but it also is driving big changes on the memory side. While the underlying technology still looks very familiar, the real shift is in the way those memories are connected to processing elements and various components within a syste... » read more

More Errors, More Correction in Memories


As memory bit cells of any type become smaller, bit error rates increase due to lower margins and process variation. This can be dealt with using error correction to account for and correct bit errors, but as more sophisticated error-correction codes (ECC) are used, it requires more silicon area, which in turn drives up the cost. Given this trend, the looming question is whether the cost of ... » read more

What Designers Need to Know About Error Correction Code (ECC) In DDR Memories


As with any electronic system, errors in the memory subsystem are possible due to design failures/defects or electrical noise in any one of the components. These errors are classified as either hard-errors (caused by design failures) or soft-errors (caused by system noise or memory array bit flips due to alpha particles, etc.). To handle these memory errors during runtime, the memory subsyst... » read more

Memory Access In AI Systems


Memory access is a key consideration in AI system design. Ron Lowman, strategic marketing manager for IP at Synopsys, talks about how memory affects overall power consumption, why partitioning of on-chip and off-chip is so critical to performance and power, and how this changes from the cloud to the edge. » read more

What Is DRAM’s Future?


Memory — and DRAM in particular — has moved into the spotlight as it finds itself in the critical path to greater system performance. This isn't the first time DRAM has been the center of attention involving performance. The problem is that not everything progresses at the same rate, creating serial bottlenecks in everything from processor performance to transistor design, and even the t... » read more

New Architectural Issues Facing Auto Ecosystem


As chips bound for the automotive world move to small process nodes, including 5nm and below, the automotive ecosystem is wrestling with both scaling issues and challenges related to architecting safety-critical systems using fewer chips. This may sound counterintuitive, because one of the main reasons automotive chip providers are moving to smaller nodes is to reduce the number of chips in ... » read more

← Older posts