Wrestling With Variation In Advanced Node Designs


Variation is becoming a major headache at advanced nodes, and issues that used to be dealt with in the fab now must be dealt with on the design side, as well. What is fundamentally changing is that margin, which has long been used as a buffer for variation and other manufacturing process-related problems, no longer works in these leading-edge designs for a couple of reasons. First, margin im... » read more

Analog Simulation At 7/5/3nm


Hany Elhak, group director of product management at Cadence, talks with Semiconductor Engineering about analog circuit simulation at advanced nodes, why process variation is an increasing problem, the impact of parasitics and finFET stacking, and what happens when gate-all-around FETs are added into the chip. » read more

Thermal Guardbanding


Stephen Crosher, CEO of Moortec, looks at the causes of thermal runaway in racks of servers and explains why accurate temperature measurement in AI and advanced-node chips is more critical, and what impact this has on performance when temperatures begin approaching acceptable limits. » read more

The Challenge Of Defining Worst Case


Worst case conditions within a chip are impossible to define. But what happens if you missed a corner case that causes chip failure? As the semiconductor market becomes increasingly competitive — startups and systems companies are now competing with established chipmakers — no one can afford to consider theoretical worst cases. Instead, they must intelligently prune the space to make sur... » read more

Curvilinear Full-Chip ILT


Leo Pang, chief product officer and executive vice president at D2S, talks about the speed improvements with full-chip inverse lithography technology, why it is so critical in stitching together large chips, and how this approach differs from traditional litho approaches. » read more

Monitoring Heat On AI Chips


Stephen Crosher, CEO of Moortec, talks about monitoring temperature differences on-chip in AI chips and how to make the most of the power that can be delivered to a device and why accuracy is so critical. » read more

Less Margin, More Respins, And New Markets


Semiconductor Engineering sat down to discuss the impact of multi-physics and new market applications on chip design with John Lee, general manager and vice president of ANSYS' Semiconductor Business Unit; Simon Burke, distinguished engineer at Xilinx; Duane Boning, professor of electrical engineering and computer science at MIT; and Thomas Harms, director EDA/IP Alliance at Infineon. What foll... » read more

Why Chips Are Getting Noisier


In the past, designers only had to worry about noise for sensitive analog portions of a design. Digital circuitry was immune. But while noise gets worse at newer process nodes, staying at 28nm does not mean that it can be ignored anymore. With Moore's Law slowing, designs have to do more with less. Margins are being squeezed, additional concurrency is added, and attempts are made to opti... » read more

Low Power Meets Variability At 7/5nm


Power-related issues are beginning to clash with process variation at 7/5nm, making timing closure more difficult and resulting in re-spins caused by unexpected errors and poor functional yield. Variability is becoming particularly troublesome at advanced nodes, and there are multiple causes of that variability. One of the key ones is the manufacturing process, which can be affected by every... » read more

Multi-Physics At 5/3nm


Joao Geada, chief technologist at ANSYS, talks about why timing, process, voltage, and temperature no longer can be considered independently of each other at the most advanced nodes, and why it becomes more critical as designs shrink from 7nm to 5nm and eventually to 3nm. In addition, more chips are being customized, and more of those chips are part of broader systems that may involve an AI com... » read more

← Older posts Newer posts →