Flipping Processor Design On Its Head


AI is changing processor design in fundamental ways, combining customized processing elements for specific AI workloads with more traditional processors for other tasks. But the tradeoffs are increasingly confusing, complex, and challenging to manage. For example, workloads can change faster than the time it takes to churn out customized designs. In addition, the AI-specific processes may ex... » read more

An Entangled Heterarchy


For decades, a form of structural hierarchy has been the principal means of handling complexity in chip design. It's not always perfect, and there is no ideal way in which to divide and conquer because that would need to focus on the analysis being performed. In fact, most systems can be viewed from a variety of different hierarchies, equally correct, and together forming a heterarchy. The e... » read more

SRAM In AI: The Future Of Memory


Experts at the Table — Part 1: Semiconductor Engineering sat down to talk about AI and the latest issues in SRAM with Tony Chan Carusone, CTO at Alphawave Semi; Steve Roddy, chief marketing officer at Quadric; and Jongsin Yun, memory technologist at Siemens EDA. What follows are excerpts of that conversation. Part two of this conversation can be found here and part three is here. [L-R]: ... » read more

RTL Optimization Best Practices Help To Achieve Power Goals And Identify Reliability Issues Earlier


Designers face enormous challenges for low-power designs. Whether it is IoT at the edge, AI in the datacenter, robotics or ADAS, the demand for increased functionality and higher performance in SoCs is rapidly stretching power budgets to their breaking point. Power must be considered at every stage of chip design. Waiting to address power until late in the design cycle – post-netlist or durin... » read more

Placement And CTS Techniques For High-Performance Computing Designs


This paper discusses the challenges of designing high-performance computing (HPC) integrated circuits (ICs) to achieve maximum performance. The design process for HPC ICs has become more complex with each new process technology, requiring new architectures and transistors. We highlight how the Siemens Aprisa digital implementation solution can solve placement and clock tree challenges in HPC de... » read more

Placement And CTS Techniques For High-Performance Computing Designs


This paper discusses the challenges of designing high-performance computing (HPC) integrated circuits (ICs) to achieve maximum performance. The design process for HPC ICs has become more complex with each new process technology, requiring new architectures and transistors. We highlight how the Siemens Aprisa digital implementation solution can solve placement and clock tree challenges in HPC de... » read more

Blog Review: Nov. 8


Siemens' Todd Westerhoff takes a look at the three stages of power integrity analysis for PCBs, challenges to board-level signal integrity, and best practices for getting the most accurate estimate of design performance. Synopsys' William Ruby provides a brief overview of the evolution of low-power design techniques and finds opportunities to reduce power and to make chip designs more energy... » read more

Chip Industry Week In Review


By Susan Rambo, Gregory Haley, Jesse Allen, and Liz Allan President Biden issued an executive order on the “Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence.” It says entities need to report large-scale computing clusters and the total computing power available, including “any model that was trained using a quantity of computing power greater than 1,026 inte... » read more

Bug, Flaw, Or Cyberattack?


The lines between counterfeiting, security, and design flaws are becoming increasingly difficult to determine in advanced packages and process nodes, where the number of possible causes of unusual behavior grow exponentially with the complexity of a device. Strange behavior may be due to a counterfeit part, including one that contains a trojan. Or it may be the result of a cyberattack. It al... » read more

Designing Automotive ICs For Cybersecurity


The day has already arrived when we need to be concerned about the cybersecurity of our cars. An average modern car includes about 1400 ICs and many of them are used in sophisticated applications, like autonomous driving and vehicle-to-everything (V2X) communication. The security of road vehicles is an important issue to automakers and OEMs but is rooted in the IC devices that power the vehicle... » read more

← Older posts Newer posts →