What’s Next In Neuromorphic Computing


To integrate devices into functioning systems, it's necessary to consider what those systems are actually supposed to do. Regardless of the application, [getkc id="305" kc_name="machine learning"] tasks involve a training phase and an inference phase. In the training phase, the system is presented with a large dataset and learns how to "correctly" analyze it. In supervised learning, the data... » read more

Predictions: Manufacturing, Devices And Companies


Some predictions are just wishful thinking, but most of these are a lot more thoughtful. They project what needs to happen for various markets or products to become successful. Those far reaching predictions may not fully happen within 2018, but we give everyone the chance to note the progress made towards their predictions at the end of the year. (See Reflection On 2017: Design And EDA and Man... » read more

A New Memory Contender?


Momentum is building for a new class of ferroelectric memories that could alter the next-generation memory landscape. Generally, ferroelectrics are associated with a memory type called ferroelectric RAMs (FRAMs). Rolled out by several vendors in the late 1990s, FRAMs are low-power, nonvolatile devices, but they are also limited to niche applications and unable to scale beyond 130nm. While... » read more

The Next 5 Years Of Chip Technology


Semiconductor Engineering sat down to discuss the future of scaling, the impact of variation, and the introduction of new materials and technologies, with Rick Gottscho, CTO of [getentity id="22820" comment="Lam Research"]; Mark Dougherty, vice president of advanced module engineering at [getentity id="22819" comment="GlobalFoundries"]; David Shortt, technical fellow at [getentity id="22876" co... » read more

Pushing DRAM’s Limits


If humans ever do create a genuinely self-aware artificial intelligence, it may well exhibit the frustration of waiting for data arrive. The access bandwidth of DRAM-based computer memory has improved by a factor of 20x over the past two decades. Capacity increased 128x during the same period. But latency improved only 1.3x, according to Kevin Chang, a researcher at Carnegie Mellon Universit... » read more

Power/Performance Bits: Nov. 7


Speeding up MRAM Researchers at UC Berkeley and UC Riverside developed an ultrafast method for electrically controlling magnetism in certain metals, which could lead to increased performance for magnetic RAM. While the nonvolatility of MRAM is a boon, speeding up the writing of a single bit of information to less than 10 nanoseconds has been a challenge. “The development of a non-volatile... » read more

Memory Test Challenges, Opportunities


The semiconductor capital equipment market is on fire, and the memory chip test equipment sector is no different. But it is getting much more difficult on the memory side. Memory test vendors are contending with next-generation devices, such as 3D NAND flash memories, HBM2 chips, low-power double-data-rate DRAMs, graphics DRAMs, phase-change memories, magnetoresistive RAMs, and resistive RAM... » read more

Four Foundries Back MRAM


Four major foundries plan to offer MRAM as an embedded memory solution by this year or next, setting the stage for what finally could prove to be a game-changer for this next-generation memory technology. GlobalFoundries, Samsung, TSMC and UMC plan to start offering spin-transfer torque magnetoresistive RAM (ST-MRAM or STT-MRAM) as an alternative or a replacement to NOR flash, possibly start... » read more

Foundries Accelerate Auto Efforts


Foundries are ramping up their efforts in automotive chip production in preparation for a surge in semiconductors used in assisted and autonomous driving. All of the major foundry vendors are scrambling to assemble the pieces and expand their process portfolios for automotive customers. The foundries are seeing a growing demand from automotive IC customers amid the push toward advanced drive... » read more

What Does An IoT Chip Look Like?


By Ed Sperling and Jeff Dorsch Internet of Things chip design sounds like a simple topic on the face of it. Look deeper, though, and it becomes clear there is no single IoT, and certainly no type of chip that will work across the ever-expanding number of applications and markets that collectively make up the IoT. Included under this umbrella term are sensors, various types of processors, ... » read more

← Older posts