Impact of Scaling and BEOL Technology Solutions At The 7nm Node On MRAM


A technical paper titled “Impact of Technology Scaling and Back-End-of-the-Line Technology Solutions on Magnetic Random-Access Memories” was published by researchers at Georgia Institute of Technology.


“While magnetic random-access memories (MRAMs) are promising because of their nonvolatility, relatively fast speeds, and high endurance, there are major challenges in adopting them for the advanced technology nodes. One of the major challenges in scaling MRAM devices is caused by the ever-increasing resistances of interconnects. In this article, we first study the impact of shrunk interconnect dimensions on MRAM performance at various technology nodes. Then, we investigate the impact of various potential back-end-of-the-line (BEOL) technology solutions at the 7 nm node. Based on interconnect resistance values from technology computer-aided design (TCAD) simulations and MRAM device characteristics from experimentally validated/calibrated physical models, we quantify the potential array-level performance of MRAM using SPICE simulations. We project that some potential BEOL technology solutions can reduce the write energy by up to 34.6% with spin-orbit torque (SOT) MRAM and 29.0% with spin-transfer torque (STT) MRAM. We also observe up to 21.4% reduction in the read energy of the SOT-MRAM arrays.”

Find the technical paper here. Published January 2024.

P. Kumar, D. E. Shim, S. Narla and A. Naeemi, “Impact of Technology Scaling and Back-End-of-the-Line Technology Solutions on Magnetic Random-Access Memories,” in IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 10, pp. 13-21, 2024, doi: 10.1109/JXCDC.2024.3357625.

Related Reading
MRAM Getting More Attention At Smallest Nodes
Why this 25-year-old technology may be the memory of choice for leading edge designs and in automotive applications.
ReRAM Seeks To Replace NOR
There is increased interest in ReRAM for embedded computing, especially in automotive applications, as more of its known issues are solved. Nevertheless, there is no one-size-fits-all NVM.

Leave a Reply

(Note: This name will be displayed publicly)