Investigating Subthreshold Current Suppression in ReS2 Nanosheet-Based FETs


A technical paper titled “Subthreshold Current Suppression in ReS2 Nanosheet-Based Field-Effect Transistors at High Temperatures” was published by researchers at University of Salerno, Università degli studi del Sannio, and University of Exeter. Abstract: "Two-dimensional rhenium disulfide (ReS2), a member of the transition-metal dichalcogenide family, has received significant attention... » read more

Navigating the Metrology Maze For GAA FETs


The chip industry is pushing the boundaries of innovation with the evolution of finFETs to gate-all-around (GAA) nanosheet transistors at the 3nm node and beyond, but it also is adding significant new metrology challenges. GAA represents a significant advancement in transistor architecture, where the gate material fully encompasses the nanosheet channel. This approach allows for the vertical... » read more

Nanosheet GAAFETs: Compact Modeling (Politecnico di Torino)


A technical paper titled “NS-GAAFET Compact Modeling: Technological Challenges in Sub-3-nm Circuit Performance” was published by researchers at Politecnico di Torino. Abstract: "NanoSheet-Gate-All-Around-FETs (NS-GAAFETs) are commonly recognized as the future technology to push the digital node scaling into the sub-3 nm range. NS-GAAFETs are expected to replace FinFETs in a few years, as ... » read more

Etch Processes Push Toward Higher Selectivity, Cost Control


Plasma etching is perhaps the most essential process in semiconductor manufacturing, and possibly the most complex of all fab operations next to photolithography. Nearly half of all fab steps rely on a plasma, an energetic ionized gas, to do their work. Despite ever-shrinking transistor and memory cells, engineers continue to deliver reliable etch processes. “To sustainably create chips... » read more

What Designers Need To Know About GAA


While only 12 years old, finFETs are reaching the end of the line. They are being supplanted by gate-all-around (GAA), starting at 3nm [1], which is expected to have a significant impact on how chips are designed. GAAs come in two main flavors today — nanosheets and nanowires. There is much confusion about nanosheets, and the difference between nanosheets and nanowires. The industry still ... » read more

Innovations in Device Design of The Gate-All-Around (GAA) Nanosheet FETs (IBM Research)


A technical paper titled "A Review of the Gate-All-Around Nanosheet FET Process Opportunities" was published by researchers at IBM Research Albany. Abstract: "In this paper, the innovations in device design of the gate-all-around (GAA) nanosheet FET are reviewed. These innovations span enablement of multiple threshold voltages and bottom dielectric isolation in addition to impact of channel... » read more

2D Semiconductor Materials Creep Toward Manufacturing


As transistors scale down, they need thinner channels to achieve adequate channel control. In silicon, though, surface roughness scattering degrades mobility, limiting the ultimate channel thickness to about 3nm. Two-dimensional transition metal dichalcogenides (TMDs), such as MoS2 and WSe2, are attractive in part because they avoid this limitation. With no out-of-plane dangling bonds and at... » read more

Metrology Options Increase As Device Needs Shift


Semiconductor fabs are taking an ‘all hands on deck’ approach to solving tough metrology and yield management challenges, combining tools, processes, and other technologies as the chip industry transitions to nanosheet transistors on the front end and heterogenous integration on the back end. Optical and e-beam tools are being extended, while X-ray inspection is being added on a case-by-... » read more

Using More Germanium In Chips for Energy Efficiency & Achievable Clock Frequencies


A new technical paper titled "Composition Dependent Electrical Transport in Si1−xGex Nanosheets with Monolithic Single-Elementary Al Contacts" was published by researchers at TU Wien (Vienna University of Technology), Johannes Kepler University, CEA-LETI, and Swiss Federal Laboratories for Materials Science and Technology. Find the technical paper here. Published September 2022. Abstrac... » read more

Full Wafer Integration of Aggressively Scaled 2D-Based Logic Circuits (Imec)


A technical paper titled "Challenges of Wafer-Scale Integration of 2D Semiconductors for High-Performance Transistor Circuits" was published by researchers at Imec. "The introduction of highly scaled 2D-based circuits for high-performance logic applications in production is projected to be implemented after the Si-sheet-based CFET devices. Here, a view on the requirements needed for full waf... » read more

← Older posts