Manufacturing Bits: June 16


Harmonic EUV The U.S. Department of Energy’s Lawrence Berkeley National Laboratory has devised an efficient extreme ultraviolet (EUV) source. The technology could one day be used for a new class of metrology tools, based on angle-resolved photoemission spectroscopy (ARPES). This technique makes use of a photoelectric effect for studying materials. To enable the source, Berkeley Labs devel... » read more

Power/Performance Bits: April 14


Elastic energy harvesting Researchers from the Korea Advanced Institute of Science and Technology (KAIST) and Seoul National University collaborated to develop a hyper-stretchable elastic-composite energy harvesting device. Their stretchable piezoelectric generator can harvest mechanical energy to produce a ~4V power output with around 250% elasticity and a durability over 104 cycles. The... » read more

Manufacturing Bits: Feb. 3


Robotic plants In 2012, the European Commission launched the so-called Plantoid project. In the project, researchers hope to devise synthetic robotic plants. Inspired by plant roots, the robots could be used for soil monitoring and other applications. The group is devising so-called artifacts. These components resemble plants and plant roots. The new technologies expected to result from the... » read more

More Problems Ahead


Semiconductor Engineering sat down to discuss future scaling problems with Lars Liebmann, a fellow at IBM; Adam Brand, managing director of transistor technology at Applied Materials; Karim Arabi, vice president of engineering at Qualcomm; and Srinivas Banna, a fellow for advanced technology architecture at GlobalFoundries. SE: Where are the most severe issues these days? Is it on the design... » read more

Atomic Layer Etch Finally Emerges


The migration towards finFETs and other devices at the 20nm node and beyond will require a new array of chip-manufacturing technologies. Multiple patterning, hybrid metrology and newfangled interconnect schemes are just a few of the technologies required for future scaling. In addition, the industry also will require new techniques that can process structures at the atomic level. For example... » read more

Manufacturing Bits: April 29


Silky e-beam lithography Tufts University has put a soft and silky spin on direct-write electron-beam lithography. Researchers used common silk as the resist material, enabling the production of photonic lattices, quantum dots and other structures. This approach is a green alternative to traditional and toxic resists. The silk-based resist is developed using a water-based process. It starts... » read more

Manufacturing Bits: Sept. 10


Rock Around The Clock National Institute of Standards and Technology’s two experimental atomic clocks have set a new record for stability. Resembling a pendulum or metronome, NIST’s atomic clocks can swing back and forth with perfect timing for a period comparable to the age of the universe. The clocks are based on ytterbium atoms. The clock ticks are stable to within less than two part... » read more

Getting Ready For High-Mobility FinFETs


By Mark LaPedus The IC industry entered the finFET era in 2011, when Intel leapfrogged the competition and rolled out the newfangled transistor technology at the 22nm node. Intel hopes to ramp up its second-generation finFET devices at 14nm by year’s end, with plans to debut its 11nm technology by 2015. Hoping to close the gap with Intel, silicon foundries are accelerating their efforts t... » read more

Newer posts →