Research Bits: Nov. 5


Optical in-memory computing Researchers from the University of Pittsburgh, University of California Santa Barbara, University of Cagliari, and Institute of Science Tokyo propose a resonance-based photonic architecture which leverages the non-reciprocal phase shift in magneto-optical materials to implement photonic in-memory computing. “The materials we use in developing these cells have b... » read more

Ultrafast Optical Chirality Logic Gates (Aalto University)


A technical paper titled "Chirality logic gates" was published by researchers at Aalto University (Finland), National Center for Nanoscience and Technology (Beijing), and University of Cambridge. Abstract (partial) "The ever-growing demand for faster and more efficient data transfer and processing has brought optical computation strategies to the forefront of research in next-generation com... » read more

Scalable Optical AI Accelerator Based on a Crossbar Architecture


A new technical paper titled "Scalable Coherent Optical Crossbar Architecture using PCM for AI Acceleration" was published by researchers at University of Washington. Abstract: "Optical computing has been recently proposed as a new compute paradigm to meet the demands of future AI/ML workloads in datacenters and supercomputers. However, proposed implementations so far suffer from lack of sc... » read more

Compact and Tunable Electro-Optic Modulator for Free Space Applications Modulating Light at Gigahertz Speed


New research paper titled "Gigahertz free-space electro-optic modulators based on Mie resonances" from researchers at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with researchers at the department of Chemistry at the University of Washington. Partial Abstract "Electro-optic modulators are essential for sensing, metrology and telecommunicatio... » read more

Power/Performance Bits: Aug. 14


All-optical logic Researchers from Aalto University developed multifunction all-optical logic gates using a network of nanowires. To build the nanostructure, the team assembled two different semiconductor nanowires, indium phosphide and aluminum gallium arsenide. The nanowires have a unique one-dimensional structure, which allows them to function like nanosized antennas for light. Using ... » read more

Design Automation For Silicon Photonics: Pushing Research Into Production


Silicon photonics is a transformative technology that will have a major impact on system architectures in future IC design applications. Already a major solution for Datacom applications and emerging applications in sensing, design techniques in silicon photonics, with the ability to leverage CMOS technology to integrate large numbers of photonic components, are now being applied to enable opti... » read more

Power/Performance Bits: Dec. 8


Light in lieu of wires In a development that could eventually lead to computers that use optics rather than electricity to carry data, Stanford engineers have designed and built a prism-like device they call an ‘optical link’ that can split a beam of light into different colors and bend the light at right angles. The optical link is a tiny slice of silicon etched with a pattern that res... » read more

Power/Performance Bits: July 9


All-optical transistor Optical computing uses light rather than electricity to perform calculations and is expected to potentially pay dividends for both conventional computers and quantum computers, which are largely hypothetical devices that could perform some types of computations exponentially faster than classical computers. One drawback is that optical computing requires light particl... » read more