Manufacturing Bits: Dec. 15


Ghost imaging quantum microscopes The U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has begun building a quantum-enhanced X-ray microscope based on a technology called ghost imaging. Still in R&D, quantum X-ray microscopes promise to provide higher resolution images with less damage to a sample. Using the National Synchrotron Light Source II (NSLS-II), researcher... » read more

Manufacturing Bits: Nov. 9


Open-source EUV resist metrology Paul Scherrer Institute (PSI) has developed an open-source software technology for scanning electron microscopy (SEM) applications. The technology is targeted for EUV resist metrology. The technology, called SMILE (SEM-Measured Image Lines Estimator), is an open source software technology, which characterizes line and space patterns in a SEM. SMILE is used t... » read more

Improving EUV Process Efficiency


The semiconductor industry is rethinking the manufacturing flow for extreme ultraviolet (EUV) lithography in an effort to improve the overall process and reduce waste in the fab. Vendors currently are developing new and potentially breakthrough fab materials and equipment. Those technologies are still in R&D and have yet to be proven. But if they work as planned, they could boost the flo... » read more

Manufacturing Bits: Sept. 24


Free flow electricity Researchers have made some new breakthroughs in the emerging field of Weyl fermions and semi-metals, a move that could one day enable free flow electricity in systems. In 2015, Princeton University and others finally proved a massless particle that had been theorized for 85 years--the Weyl fermion. A fermion is a subatomic particle. Proposed by the mathematician and... » read more

Manufacturing Bits: May 21


World’s loudest underwater sound A group of researchers hit tiny jets of water with a high-power X-ray laser, creating a record for the world’s loudest underwater sound. The intensity of the blast resulted in an underwater sound with an intensity greater than 270 decibels (dB). That’s greater than the intensity of a rocket launch or equivalent of creating electrical power for a city o... » read more

What’s Missing In EUV?


Extreme ultraviolet (EUV) lithography is expected to move into production at 7nm and/or 5nm, but as previously reported, there are some gaps in the arena. At one time, the power source was the big problem, but that appears to be solved in the near term. Now, a phenomenon called stochastic effects, or random variations, are the biggest challenge for EUV lithography. But at most events, th... » read more

Manufacturing Bits: Jan. 16


Coherent X-ray imaging Russia’s National University of Science and Technology MISIS has developed a non-destructive way to observe the inner structures of photonic crystals. The technology, called ptychographic coherent X-ray imaging, obtains the electron density of colloidal crystals. Ptychography is a lensless, X-ray coherent imaging technique. Others are also working on the techno... » read more

Searching For EUV Mask Defects


Chipmakers hope to insert extreme ultraviolet (EUV) lithography at 7nm and/or 5nm, but several challenges need to be solved before this technology can be used in production. One lingering issue that is becoming more worrisome is how to find [gettech id="31045" comment="EUV"] mask defects. That isn't the only issue, of course. The industry continues to work on the power source and resists. Bu... » read more

Manufacturing Bits: Aug. 29


Compact synchrotron EUV sources For some time, the industry has been exploring the development of next-generation power sources for extreme ultraviolet (EUV) lithography. ASML and Gigaphoton are separately developing EUV sources based on the more traditional and compact laser-produced-plasma (LPP) technology. Then, in R&D, others are exploring the development of futuristic EUV sources us... » read more

Manufacturing Bits: Aug. 1


Magnetic chips HRL Laboratories—an R&D venture between Boeing and General Motors—has been awarded a contract to develop a new class of magnetic integrated components. HRL has received the award from the Defense Advanced Research Project Agency (DARPA) under the Magnetic, Miniaturized, and Monolithically Integrated Components (M3IC) program. The goal is to develop new magnetic materials... » read more

← Older posts Newer posts →