中文 English

Principles, Applications, And The Future Of Piezoelectric MEMS


Piezoelectricity is a property of certain materials to become electrically polarized under strain and stress. This phenomenon has been studied extensively since it was first discovered in the mid-18th century. Piezoelectric materials can generate an electric charge in response to an applied mechanical stress and can also generate mechanical stress upon an applied electrical charge. These mater... » read more

Power/Performance Bits: March 8


Non-toxic, printable piezoelectric Researchers at RMIT University and University of New South Wales developed a flexible and printable piezoelectric material that could be used in self-powered electronics including wearables and implantables. "Until now, the best performing nano-thin piezoelectrics have been based on lead, a toxic material that is not suitable for biomedical use," said Dr N... » read more

A Summary Of Piezoelectric Energy Harvesting For Autonomous Smart Structures


The technology of energy harvesting has great potential to enable energy autonomy of wireless sensors. The drop of power requirements of micro-electronic devices allows confidence that piezoelectric energy harvesting (PEH) is able to reliably power a wireless sensor network (WSN). The present work summarizes results of ongoing research in the field of PEH. With the aid of a performance metric a... » read more

Power/Performance Bits: June 5


Self-assembled battery Researchers at Cornell University developed a self-assembling battery capable of near-instant charging. Instead of having the batteries' anode and cathode on either side of a nonconducting separator, the team's new approach intertwines the components in a self-assembling, 3D gyroidal structure, with thousands of nanoscale pores filled with the elements necessary for e... » read more

Power/Performance Bits: Feb. 21


Harvesting energy from multiple sources Researchers from the University of Oulu in Finland found a particular type of perovskite, KBNNO, has the right properties to extract energy from multiple sources simultaneously. While perovskites are particularly known for their use as solar cells, certain minerals in the perovskite family show piezoelectric and pyroelectric (harvesting energy from ... » read more

Power/Performance Bits: Sept. 13


Core-to-core communication Most research featured in the Power/Performance Bits has far-off applications, but a team from North Carolina State University and Intel developed something that could be brought into practice today: a way to accelerate core-to-core communication. Many important workloads incur significant core-to-core communication and are affected significantly by the costs, i... » read more

The Trouble With MEMS


The advent of the Internet of Things will open up a slew of new opportunities for MEMS-based sensors, but chipmakers are proceeding cautiously. There are a number of reasons for that restraint. Microelectromechanical systems are difficult to design, manufacture and test, which initially fueled optimism in the MEMS ecosystem that this market would command the same kinds of premiums that analo... » read more

Power/Performance Bits: March 29


Photonic-phononic circuit Researchers at the National Institute of Standards and Technology (NIST) developed a piezo-optomechanical circuit that converts signals among optical, acoustic and radio waves. At the heart of the piezoelectric optomechanical circuit is an optomechanical cavity, which consists of a suspended nanoscale beam. Within the beam are a series of holes that act like a ha... » read more

Manufacturing & MEMS


By Joanne Itow There’s been a lot of attention focused on MEMS in the past couple of years, and rightfully so. In 2011 when total semiconductor revenues grew by only 1.3%, MEMS revenues grew by more than 34%. MEMS have been activating air bags in our cars and projecting images on DLP screens for years, but it wasn’t until the accelerometer in smartphones when mainstream semiconductor manuf... » read more