Power/Performance Bits: Nov. 24


Flexible, low power phase-change memory Engineers at Stanford University created a flexible phase-change memory. The non-volatile phase-change memory device is made up of germanium, antimony, and tellurium (GST) between two metal electrodes. 1s and 0s represent measurements of electrical resistance in the GST material. “A typical phase-change memory device can store two states of resis... » read more

Manufacturing Bits: April 5


Open access superconducting magnets The National High Magnetic Field Laboratory or MagLab has opened the world's strongest superconducting magnet to users. In the works for eight years, the 32 tesla (T) all-superconducting magnet enables scientists to conduct research for various applications, such as quantum matter experiments. The system is called the SCM-32 T. MagLab develops several ... » read more

Power/Performance Bits: Jan. 17


Creating magnets with electricity Researchers at the SLAC National Accelerator Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Korea Institute of Materials Science, Pohang University of Science and Technology, Max Planck Institute, and the University of New South Wales drew magnetic squares in a nonmagnetic material with an electrified pen and then "read" this magneti... » read more

Power/Performance Bits: May 17


Shrinking perovskites Researchers from Imperial College London, Oxford University, Diamond Light Source, Pohang University of Science and Technology in Korea, and Rutgers University have discovered a material that can be chemically tailored to either expand or contract in a precise way and over a wide temperature range. This could lead to new composite materials that do not expand when heate... » read more

Newer posts →