Enabling New Applications With SiC IGBT And GaN HEMT For Power Module Design


The need to mitigate climate change is driving a need to electrify our infrastructure, vehicles, and appliances, which can then be charged and powered by renewable energy sources. The most visible and impactful electrification is now under way for electric vehicles (EVs). Beyond the transition to electric engines, several new features and technologies are driving the electrification of vehicles... » read more

Protecting Automotive Power Distribution


It was on a warm summer’s evening aboard a cruise boat on one of Austria’s most beautiful lakes that I was co-hosting an Infineon event to conclude a professional experience week for a group of around 50 students from technical high schools in the region. It was time for the final round for us to showcase our creations. Smaller groups of around 10 students went from co-host to co-host, a... » read more

High-Temp, High-Electron Mobility MOSFETs Based On N-Type Diamond


A new technical paper titled "High-Temperature and High-Electron Mobility Metal-Oxide-Semiconductor Field-Effect Transistors Based on N-Type Diamond" was published by researchers at National Institute for Materials Science (Japan). Abstract: "Diamond holds the highest figure-of-merits among all the known semiconductors for next-generation electronic devices far beyond the performance of c... » read more

Using Picosecond Ultrasonics To Measure Trench Structures In SiC Power Devices


The road to the future is not always a smooth, trouble-free drive. Along the way, there may be unforeseen detours, potholes and accidents, each one capable of setting progress back. But for those behind the wheel, those obstacles are just a part of the journey. Such is the case for the automotive industry as it continues to steer away from gas-powered vehicles and turn toward hybrid and elec... » read more

What’s Next For Power Electronics? Beyond Silicon


For more than half a century, silicon has been the bedrock of power electronics. Yet as silicon meets its physical limitations in higher-power, higher-temperature applications, the industry’s relentless pursuit of more efficient power systems has ushered in the wide bandgap (WBG) semiconductors era. The global WBG semiconductors market reached $1.6 billion in 2022, with an estimated CAGR of ... » read more

Using OCD To Measure Trench Structures In SiC Power Devices


You don’t have to be a dedicated follower of the transportation industry to know it is in the early stages of a significant transition, away from the rumbling internal combustion engine to the quiet days of electric vehicles. The signs of this transition are right there on the streets in the form of electric-powered buses, bikes and cars. The road to our electric future is before us, but we w... » read more

Why Is The Power Device Market So Hot Right Now?


Growing adoption of electric vehicles (EVs) and renewable energy sources is putting the spotlight on power semiconductor devices. These power devices have always been essential in determining the efficiency of a variety of systems, from small household electronics to equipment used in outer space. But as calls to reduce carbon emissions get louder, the market for these chips continues to flouri... » read more

Using TCAD To Simulate Wide-Bandgap Materials For Electronics Design


Wide-bandgap (WBG) semiconductors are a class of materials that can offer a range of advantages over silicon. These materials can operate at higher voltages and higher temperatures, serving as critical enablers of innovation in Power and RF applications and functioning in a wider range of environments that are sometimes extreme. Electronics applications benefit from these wide-bandgap materials... » read more

Properties Of The State-Of-The-Art Commercially Available SiC and GaN Power Transistors


A technical paper titled “Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives” was published by researchers at University of Padova. Abstract: "We present a comprehensive review and outlook of silicon carbide (SiC) and gallium nitride (GaN) transistors available on the market for current and next-generation power electronics. Materi... » read more

Using FTIR To Improve SiC Power Device Performance


The figures alone are impressive: SiC power devices are experiencing an annual average growth rate approaching 34% through 2027, according to the Yole Group. However, the potential for this amongst other compound semiconductor-based power devices such as gallium nitride (GaN) to change the world around us is even more impressive. Thanks to the role that SiC-based devices play in the increase... » read more

← Older posts