Nip The Defect In The Bud


As technology nodes shrink, end users are designing systems where each chip element is being targeted for a specific technology and manufacturing node. While designing chip functionality to address specific technology nodes optimizes a chip’s performance regarding that functionality, this performance comes at a cost: additional chips will need to be designed, developed, processed, and assembl... » read more

Weaving Digital Threads Into A Global Fabric Of Enterprise Knowledge


How smart manufacturing software provides visibility and control of all phases of the semiconductor manufacturing process. Run-to-run (R2R) automated process control gathers critical data from each production run and automatically adjusts process parameters for the next run based on sophisticated models of process performance. Click here to read more. » read more

Next-Gen Transistors


Nanosheets, or more generally, gate-all-around FETs, mark the next big shift in transistor structures at the most advanced nodes. David Fried, vice president of computational products at Lam Research, talks with Semiconductor Engineering about the advantages of using these new transistor types, along with myriad challenges at future nodes, particularly in the area of metrology. » read more

MEMS: New Materials, Markets And Packaging


Semiconductor Engineering sat down to talk about future developments and challenges for microelectromechanical systems (MEMS) with Gerold Schropfer, director of MEMS products and European operations in Lam Research's Computational Products group, and Michelle Bourke, senior director of strategic marketing for Lam's Customer Support Business Group. What follows are excerpts of that conversation.... » read more

Untangling 3D NAND: Tilt, Registration, And Misalignment


The multiple demands of 3D NAND to enable yield and performance increase in difficulty at each generation. First generation devices, at 24-32 layer pairs, pushed process tools to extremes, going quickly from 10:1 to 40:1 aspect ratios for today’s 64-96 pair single tier devices. The aspect ratios increased as fast as the manufacturing challenges. To continue bit density scaling, processing imp... » read more

Extreme Quality Semiconductor Manufacturing, Part 1: Automotive


By Ben Tsai and Cathy Perry Sullivan Across the full range of semiconductor device types and design nodes, there is a drive to produce chips with significantly higher quality. Automotive, IoT and other industrial applications require chips that achieve very high reliability over a long period of time, and some of these chips must maintain reliable performance while operating in an environmen... » read more

Weighing Wafers Simplifies Metrology


Building semiconductors is an incredibly exacting process, with critical dimensions posing significant equipment challenges – and with the possibility that small process excursions can cause the yield to decrease. For this reason, it has always been important to measure and monitor the most critical process steps to ensure that no further processing is done on a faulty lot and so that equipme... » read more

Process Control For Next-Generation Memories


The Internet of Things (IoT), Big Data and Artificial Intelligence (AI) are driving the need for higher speeds and more power-efficient computing. The industry is responding by bringing new memory technologies to the marketplace. Three new types of memory in particular—MRAM (magnetic random access memory), PCRAM (phase change RAM) and ReRAM (resistive RAM)—are emerging as leading candidat... » read more

Controlling IC Manufacturing Processes For Yield


Equipment and tools vendors are starting to focus on data as a means of improving yield, adding more sensors and analysis capabilities into the manufacturing flow to circumvent problems in real time. How much this will impact the cost of developing complex chips at leading-edge nodes, and in 2.5D and 3D-IC packages, remains to be seen. But the race to both generate data during manufacturing ... » read more

Virtual Fabrication And Advanced Process Control Improve Yield For SAQP Process Assessment With 16nm Half-Pitch


This paper uses Virtual Fabrication to assess the Imec 7nm node (iN7) Self-Aligned Quadruple Patterning (SAQP) integration scheme for the 16nm half-pitch Metal 2 line formation. We first present the technical challenge of obtaining defect-free M2 lines with SAQP, and then provide a solution to achieve a » read more

← Older posts Newer posts →