Why nanosheets and gate-all-around FETs are the next big shift in transistor structures.
Nanosheets, or more generally, gate-all-around FETs, mark the next big shift in transistor structures at the most advanced nodes. David Fried, vice president of computational products at Lam Research, talks with Semiconductor Engineering about the advantages of using these new transistor types, along with myriad challenges at future nodes, particularly in the area of metrology.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
Continued expansion in new and existing markets points to massive and sustained growth.
Experts at the Table: Designing for context, and geopolitical impacts on a global supply chain.
Funding rolls in for photonics and batteries; 88 startups raise $1.3B.
Why UCIe is so important for heterogeneous integration.
Interest in this particular ISA is expanding, but the growth of other open-source hardware is less certain.
Nanosheets are likeliest option throughout this decade, with CFETs and other exotic structures possible after that.
Hybrid bonding opens up whole new level of performance in packaging, but it’s not the only improvement.
Suppliers are investing new 300mm capacity, but it’s probably not enough. And despite burgeoning 200mm demand, only Okmetic and new players in China are adding capacity.
Why this is becoming a bigger issue, and what can be done to mitigate the effects.
From low resistance vias to buried power rails, it takes multiple strategies to usher in 2nm chips.
Manufacturing 3D structures will require atomic-level control of what’s removed and what stays on a wafer.
Disaggregation and the wind-down of Moore’s Law have changed everything.
Leave a Reply