Some Chipmakers Sidestep Scaling, Others Hedge


The rising cost of developing chips at 7nm coupled with the reduced benefits of scaling have pried open the floodgates for a variety of options involving new materials, architectures and packaging that either were ignored or not fully developed in the past. Some of these approaches are closely tied to new markets, such as assisted and autonomous vehicles, robotics and 5G. Others involve new ... » read more

Power Issues Grow For Cloud Chips


Performance levels in traditional or hyperscale data centers are being limited by power and heat caused by an increasing number of processors, memory, disk and operating systems within servers. The problem is so complex and intertwined, though, that solving it requires a series of steps that hopefully add up to a significant reduction across a system. But at 7nm and below, predicting exactly... » read more

Big Trouble At 3nm


As chipmakers begin to ramp up 10nm/7nm technologies in the market, vendors are also gearing up for the development of a next-generation transistor type at 3nm. Some have announced specific plans at 3nm, but the transition to this node is expected to be a long and bumpy one, filled with a slew of technical and cost challenges. For example, the design cost for a 3nm chip could exceed an eye-p... » read more

Chip Dis-Integration


Just because something can be done does not always mean that it should be done. One segment of the semiconductor industry is learning the hard way that continued chip integration has a significant downside. At the same time, another another group has just started to see the benefits of consolidating functionality onto a single substrate. Companies that have been following Moore's Law and hav... » read more

New Transistor Types Vs. Packaging


Plans are being formulated for the rollout of multiple types of gate-all-around FETs and literally dozens of advanced packaging options. The question now is which ones will achieve critical mass, because there aren't enough chips in the world to support all of them profitably. FinFETs, which were first introduced by Intel at 22nm, are running out of steam. While they will survive 10/7nm, and... » read more

Quantum Effects At 7/5nm And Beyond


Quantum effects are becoming more pronounced at the most advanced nodes, causing unusual and sometimes unexpected changes in how electronic devices and signals behave. Quantum effects typically occur well behind the curtain for most of the chip industry, baked into a set of design rules developed from foundry data that most companies never see. This explains why foundries and manufacturing e... » read more

Tech Talk: 5/3nm Parasitics


Ralph Iverson, principal R&D engineer at Synopsys, talks about parasitic extraction at 5/3nm and what to expect with new materials and gate structures such as gate-all-around FETs and vertical nanowire FETs. https://youtu.be/24C6byQBkuI » read more

Transistor Options Beyond 3nm


Despite a slowdown in chip scaling amid soaring costs, the industry continues to search for a new transistor type 5 to 10 years out—particularly for the 2nm and 1nm nodes. Specifically, the industry is pinpointing and narrowing down the transistor options for the next major nodes after 3nm. Those two nodes, called 2.5nm and 1.5nm, are slated to appear in 2027 and 2030, respectively, accord... » read more

New Thermal Issues Emerge


Thermal monitoring is becoming more critical as gate density continues to increase at each new node and as chips are developed for safety critical markets such as automotive. This may sound counterintuitive because the whole point of device scaling is to increase gate density. But at 10/7 and 7/5nm, static current leakage is becoming a bigger issue, raising questions about how long [getkc id... » read more

Nodes Vs. Nodelets


Foundries are flooding the market with new nodes and different process options at existing nodes, spreading confusion and creating a variety of challenges for chipmakers. There are full-node processes, such as 10nm and 7nm, with 5nm and 3nm in R&D. But there also is an increasing number of half-nodes or "node-lets" being introduced, including 12nm, 11nm, 8nm, 6nm and 4nm. Node-lets ar... » read more

← Older posts