中文 English

Power/Performance Bits: March 23


Metasurface for optical media Researchers at Purdue University proposed a new way to store information in optical media, such as CDs and DVDs, that could improve both storage capacity and read times. The development focuses on encoding information in the angular position of tiny antennas, allowing them to store more data per unit area. "The storage capacity greatly increases because it is o... » read more

FeFETs Bring Promise And Challenges


Ferroelectric FETs (FeFETs) and memory (FeRAM) are generating high levels of interest in the research community. Based on a physical mechanism that hasn’t yet been commercially exploited, they join the other interesting new physics ideas that are in various stages of commercialization. “FeRAM is very promising, but it's like all promising memory technologies — it takes a while to get b... » read more

Power/Performance Bits: Sept. 29


Implantable transmitter Researchers from Purdue University developed a fully implantable, wirelessly powered 2.4GHz radio-frequency transmitter chip for wireless sensor nodes and biomedical devices. The team says the transmitter chip consumes the lowest amount of energy per digital bit published to date, consuming an active-mode power of 70 μW at 10 Mbps while radiating -33 dBm of power, r... » read more

Power/Performance Bits: Sept. 15


Higher-res lidar Researchers from Purdue University and École Polytechnique Fédérale de Lausanne (EPFL) devised a way to improve lidar and provide higher-resolution detection of nearby fast-moving objects through mechanical control and modulation of light on a silicon chip. "Frequency modulated continuous wave" (FMCW) lidar detects objects by scanning laser light from the top of a vehicl... » read more

Power/Performance Bits: July 21


AI hardware Researchers at Purdue University, University of California San Diego, Argonne National Laboratory, University of Louisville, Brookhaven National Laboratory, and University of Iowa developed hardware that can learn skills, offloading some of the energy needed by AI software. "Software is taking on most of the challenges in AI. If you could incorporate intelligence into the circui... » read more

Power/Performance Bits: July 14


5G switches Researchers from the University of Texas at Austin and University of Lille built a new radio frequency switch that could save power in 5G devices when not actively jumping between different networks and spectrum frequencies. “It has become clear that the existing switches consume significant amounts of power, and that power consumed is useless power,” said Deji Akinwande, a ... » read more

Power/Performance Bits: March 31


Tellurium transistors Researchers from Purdue University, Washington University in St Louis, University of Texas at Dallas, and Michigan Technological University propose the rare earth element tellurium as a potential material for ultra-small transistors. Encapsulated in a nanotube made of boron nitride, tellurium helps build a field-effect transistor with a diameter of two nanometers. ... » read more

Scaling Up Compute-In-Memory Accelerators


Researchers are zeroing in on new architectures to boost performance by limiting the movement of data in a device, but this is proving to be much harder than it appears. The argument for memory-based computation is familiar by now. Many important computational workloads involve repetitive operations on large datasets. Moving data from memory to the processing unit and back — the so-called ... » read more

Power/Performance Bits: Jan. 13


Ferroelectric memory Researchers at the Moscow Institute of Physics and Technology and North Carolina State University developed a ferroelectric memory cell and a method for measuring the electric potential distribution across a ferroelectric capacitor, an important aspect of creating new nonvolatile ferroelectric devices. The team's new ferroelectric memory cell is made from a 10nm thick z... » read more

Power/Performance Bits: Jan. 7


Ferroelectric FET Researchers at Purdue University developed a ferroelectric transistor capable of both processing and storing information. The ferroelectric semiconductor field-effect transistor is made of alpha indium selenide, which overcomes the problem of ferroelectric materials not interfacing well with silicon. “We used a semiconductor that has ferroelectric properties. This way tw... » read more

← Older posts