Do Superconducting Processors Really Need Cryogenic Memories? The Case For Cold DRAM


Cryogenic, superconducting digital processors offer the promise of greatly reduced operating power for server-class computing systems. This is due to the exceptionally low energy per operation of Single Flux Quantum circuits built from Josephson junction devices operating at the temperature of 4 Kelvin. Unfortunately, no suitable same-temperature memory technology yet exists to complement thes... » read more

System Bits: Aug. 5


Algorithm could advance quantum computing Scientists at the Los Alamos National Laboratory report the development of a quantum computing algorithm that promises to provide a better understanding of the quantum-to-classical transition, enabling model systems for biological proteins and other advanced applications. “The quantum-to-classical transition occurs when you add more and more parti... » read more

System Bits: July 30


A camera that sees around corners Researchers at Stanford University developed a camera system that can detect moving objects around a corner, looking at single particles of light reflected on a wall. “People talk about building a camera that can see as well as humans for applications such as autonomous cars and robots, but we want to build systems that go well beyond that,” said Gordon... » read more

Semicon West Debrief


AI vs. energy. Quantum for everyone. Biofabrication of human organs on a mass scale. Slowing advancements from Moore’s law. In the midst of a market dip, optimism reigned as keynote and AI Design Forum speakers addressed both looming challenges and explosive market opportunities during July 9-10 presentations at SEMICON West 2019 in San Francisco. SEMICON West again proved to be a magnet f... » read more

Low-Power Design Becomes Even More Complex


Throughout the SoC design flow, there has been a tremendous amount of research done to ease the pain of managing a long list of power-related issues. And while headway has been made, the addition of new application areas such as AI/ML/DL, automotive and IoT has raised as many new problems as have been solved. The challenges are particularly acute at leading-edge nodes where devices are power... » read more

System Bits: July 3


CMU prof gets a shot at new supercomputer The National Energy Research Scientific Computing Center will greet its Perlmutter supercomputing system in early 2020. The Cray-designed machine will be capable of 100 million billion floating operations per second. Zachary Ulissi of Carnegie Mellon University will be among the first researchers to use the supercomputer. "When this machine comes on... » read more

System Bits: June 4


Thin films for quantum computing Researchers at Los Alamos National Laboratory report their development of two-dimensional tungsten/selenium thin films that can control the emission of single photons, potentially useful in quantum technologies. “Efficiently controlling certain thin-film materials so they emit single photons at precise locations—what’s known as deterministic quantum em... » read more

Controlling Variability And Cost At 3nm And Beyond


Richard Gottscho, executive vice president and CTO of Lam Research, sat down with Semiconductor Engineering to talk about how to utilize more data from sensors in manufacturing equipment, the migration to new process nodes, and advancements in ALE and materials that could have a big impact on controlling costs. What follows are excerpts of that conversation. SE: As more sensors are added int... » read more

System Bits: May 14


Faster U.S. supercomputers on the way The U.S. Department of Energy awarded a contract for more than $600 million to Cray for an exascale supercomputer to be installed at the Oak Ridge National Laboratory during 2021. Cray will provide its Shasta architecture and Slingshot interconnect for what is dubbed the Frontier supercomputer. Advanced Micro Devices will have a key role in building the... » read more

System Bits: March 11


Cryptography IC for the IoT Massachusetts Institute of Technology researchers report their development of a cryptographic circuit that could be used to protect low-power Internet of Things devices when quantum computing takes hold. [caption id="attachment_24144905" align="alignleft" width="300"] Image Credit: MIT[/caption] The research team presented a paper at the 2019 International Sol... » read more

← Older posts Newer posts →