System Bits: June 6


Silicon nanosheet-based builds 5nm transistor To enable the manufacturing of 5nm chips, IBM, GLOBALFOUNDRIES, Samsung, and equipment suppliers have developed what they say is an industry-first process to build 5nm silicon nanosheet transistors. This development comes less than two years since developing a 7nm test node chip with 20 billion transistors. Now, they’ve paved the way for 30 billi... » read more

Power/Performance Bits: May 30


Flexible nanogenerator acts as loudspeaker, microphone Engineers at Michigan State University developed a paper-thin, flexible ferroelectret nanogenerator, or FENG, that can both generate energy from human motion and act as a loudspeaker and microphone. "This is the first transducer that is ultrathin, flexible, scalable and bidirectional, meaning it can convert mechanical energy to electr... » read more

System Bits: May 23


Next-era transistors engage diamonds To advance the development of more robust and energy-efficient electronics, materials scientists from Japan’s National Institute for Materials Sciences have developed a new diamond transistor fabrication process. To address the challenges of silicon, Jiangwei Liu and the team have recently described new work developing diamond-based transistors. “Sil... » read more

Manufacturing Bits: May 16


Musical learning chips Imec has demonstrated a neuromorphic chip. The brain-inspired chip, based on OxRAM technology, has the capability of self-learning and has been demonstrated to have the ability to compose music. Imec has combined state-of-the-art hardware and software to design chips that feature these characteristics of a self-learning system. Imec’s goal is to design the process t... » read more

System Bits: April 11


Tiny transistors made from self-assembled carbon nanotubes While carbon nanotubes can be used to make very small electronic devices, they are difficult to handle. Now, researchers from the University of Groningen, the University of Wuppertal, and IBM Zurich, have developed a method to select semiconducting nanotubes from a solution, and make them self-assemble on a circuit of gold electrodes. ... » read more

System Bits: April 4


Nanodevices for extreme environments in space, on earth Researchers at the Stanford Extreme Environment Microsystems Laboratory (XLab) are on a mission to conquer conditions such as those found on Venus: a hot surface pelted with sulfuric acid rains, 480 degrees C, an atmosphere that would fry today’s electronics. By developing heat-, corrosion- and radiation-resistant electronics, the team ... » read more

Power/Performance Bits: April 4


Self-sustaining microbial fuel cell Researchers at Binghamton University developed the first micro-scale self-sustaining microbial fuel cell, which generates power through the symbiotic interactions of two types of bacteria. A mixed culture of phototrophic and heterotrophic bacteria were placed in a 90-microliter cell chamber, or about one-fifth the size of a teaspoon. Phototrophic bacter... » read more

System Bits: Feb. 28


Software robots have fights lasting years According to University of Oxford and Alan Turing Institute researchers, editing bots on Wikipedia undo vandalism, enforce bans, check spelling, create links and import content automatically, whereas other non-editing bots mine data, identify data or identify copyright infringements — sometimes with unpredictable consequences. The team looked at h... » read more

System Bits: Jan. 10


Speeding up computing tasks by turning memory chips into processors In a development that could lead to data being processed in the same spot where it is stored, for much faster and thinner mobile devices and computers, a team of researchers from Nanyang Technological University, Singapore (NTU Singapore), Germany’s RWTH Aachen University, and interdisciplinary research center Forschungszent... » read more

System Bits: Jan. 3


Clues to high-temp superconductivity Offering clues about the microscopic origins of high-temperature superconductivity, physicists at Rice University’s Center for Quantum Materials (RCQM) have created a new iron-based material. The material is a formulation of iron, sodium, copper and arsenic created by Rice graduate student Yu Song in the laboratory of physicist Pengcheng Dai. The recip... » read more

← Older posts Newer posts →