Weaving A Digital Thread For Design And Manufacture Of Additive Electronics


Additive manufacturing has been around electronics since thick-film, screened hybrids came on the scene more than 30 years ago. And while those never quite went away, they never gained the prominence we all expected alongside the more traditional laminated, subtractive-etched PCBs. Today, emerging technologies are bringing a resurgence in additive manufacturing, also known as printed electro... » read more

Fast And Simple Rigid-Flex PCB Bending EM Analysis Using Clarity 3D Solver


3D PCB Electromagnetic (EM) Bending Analysis Rigid-Flex PCBs have been used in many modern electronic devices (such as mobile phones, laptops, and wearables, among others), due to their form factor, light weight, and cost-effectiveness. Electromagnetic (EM) analysis of Rigid-Flex PCBs has always been a challenging task for many commercially available 3D numerical solver technologies (FEM and F... » read more

Rigid-Flex PCB Bending EM Analysis Using Clarity 3D Solver


Rigid-Flex PCBs have been used in many modern electronic devices (such as mobile phones, laptops, and wearables, among others), due to their form factor, light weight, and cost-effectiveness. Electromagnetic (EM) analysis of Rigid-Flex PCBs has always been a challenging task for many commercially available 3D numerical solver technologies (FEM and FDTD), due to the complexity in the 3D designs.... » read more

Automating Inter-Layer In-Design Checks In Rigid-Flex PCBs


Flexible PCBs (flex/rigid-flex) make it possible to create a variety of products that require small form factors and light weight, such as wearable, mobile, military, and medical devices. As flexible PCB fabrication technology has matured in response to demands for smaller, lighter products, new design challenges have emerged. This paper discusses some of the key challenges to address and also ... » read more