Secure Interfaces In An Increasingly Connected World


The tremendous data and bandwidth growth in the era of supercomputing is driving technological advances across markets and is reshaping system-on-chip (SoC) designs supporting new compute architectures, more acceleration, and more storage. As high bandwidth interfaces including DDR, PCIe, CXL, Ethernet, HDMI and DisplayPort are proliferating and evolving from one generation to another, so does ... » read more

Enabling The Highest Levels Of SoC Security


The tremendous data and bandwidth growth in the era of supercomputing is driving technological advances across markets and is reshaping system-on-chip (SoC) designs supporting new compute architectures, more acceleration, and more storage. As high bandwidth interfaces including DDR, PCIe, CXL, Ethernet, HDMI and DisplayPort are proliferating and evolving from one generation to another, so does ... » read more

Data Security Takes Front Seat In Industrial IoT Design


As recently as 10 years ago, protecting Internet of Things (IoT) data was largely an afterthought. Engineers designing IoT and industrial IoT (IIoT) networks were more concerned with ensuring their applications functioned according to design specifications, not with the unintended consequences of releasing potentially sensitive information into the cloud. Today, with billions of sensors an... » read more

Securing Accelerator Blades For Datacenter AI/ML Workloads


Data centers handle huge amounts of AI/ML training and inference workloads for their individual customers. Such a vast number of workloads calls for efficient processing, and to handle these workloads we have seen many new solutions emerge in the market. One of these solutions is pluggable accelerator blades, often deployed in massively parallel arrays, that implement the latest state-of-the-ar... » read more

Research Bits: Oct. 18


Modular AI chip Engineers at the Massachusetts Institute of Technology (MIT), Harvard University, Stanford University, Lawrence Berkeley National Laboratory, Korea Institute of Science and Technology, and Tsinghua University created a modular approach to building stackable, reconfigurable AI chips. The design comprises alternating layers of sensing and processing elements, along with LEDs t... » read more

A Security Maturity Model For Hardware Development


With systems only growing more sophisticated, the potential for new semiconductor vulnerabilities continues to rise. Consumers and hardware partners are counting on organizations meeting their due diligence obligations to ensure security sensitive design assets are secure when products are shipped. This is an iterative process, so a security maturity model is a critical element in getting it ri... » read more

Week In Review: Auto, Security, Pervasive Computing


Automotive, Mobility Hyundai announced all of its vehicles will be software-defined vehicles (SDVs) by 2025. The company said all newly launched Hyundai vehicles will be able to receive over-the-air software updates next year, and that it expects to register 20 million vehicles to its Connected Car Services system by 2025. Hyundai also said it will invest the equivalent of more than $12 billio... » read more

Security For SoC Interfaces Takes Center Stage In Data Protection


Due to today’s connected world, a high volume of valuable data, susceptible to tampering and physical attacks, is processed, stored, and moved between devices, cars, and data centers. And the number of connections continues to grow. Even with supply chain disruptions and the overarching effects of the COVID-19 pandemic on chip manufacturing, the number of global IoT connections grew by 8% in ... » read more

DRM Security Trends And Future


Digital rights management (DRM) is known to protect and encrypt content in order to deliver it to the device. DRM’s main purpose is to close the gaps in content protection strategies and enable content consumption on different devices to be easily accessible. As DRM technologies have matured, it is expected that their security capabilities will follow. The security measures implemented on ... » read more

Testing Chips For Security


Supply chains and manufacturing processes are becoming increasingly diverse, making it much harder to validate the security in complex chips. To make matters worse, it can be challenging to justify the time and expense to do so, and there’s little agreement on the ideal metrics and processes involved. Still, this is particularly important as chip architectures evolve from a single chip dev... » read more

← Older posts Newer posts →