Why Chips Fail, And What To Do About It


Experts at the Table: Semiconductor Engineering sat down to discuss reliability of chips in the context of safety- and mission-critical systems, as well as increasing utilization due to an explosion in AI data, with Steve Pateras, vice president of marketing and business development at Synopsys; Noam Brousard, vice president of solutions engineering at proteanTecs; Harry Foster, chief verificat... » read more

Silicon Lifecycle Management Gains Steam


Silicon lifecycle management (SLM) is gaining significant traction, driven increasingly by stringent reliability requirements for safety-critical devices in aerospace, medical, and automotive. Improving reliability has been a discussion point for years, but it has become especially important with the use of chips designed at leading-edge nodes in both mission- and safety-critical application... » read more

Aging, Complexity, And AI In Analog Design


Experts at the Table: Semiconductor Engineering sat down to discuss abstraction in analog vs. digital, how analog circuits age, the growing role of AI, and why there is so much margin in analog designs, with Mo Faisal, president and CEO of Movellus; Hany Elhak, executive director of product management at Synopsys; Cedric Pujol, product manager at Keysight; and Pradeep Thiagarajan, principal pro... » read more

Yield Management Embraces Expanding Role


Competitive pressures, shrinking time-to-market windows, and increased customization are collectively changing the dynamics and demands for yield management systems, shifting left from the fab to the design flow and right to assembly, packaging, and in-field analysis. The basic role of yield management systems is still expediting new product introductions, reducing scrap, and delivering grea... » read more

Advancements In Silicon Device Technology And Design Driving New SLM Monitor Categories


Silicon, the foundation of modern electronics, has seen continuous advancements since the early days of integrated circuits. The pace of innovation has been driven by the relentless quest for miniaturization, increased performance, and efficiency. However, Moore’s Law is no longer a given and silicon is facing functional limitations as technology scales. To address these challenges and conti... » read more

Ensuring Multi-Die Package Quality And Reliability


Multi-die designs are gaining broader adoption in a wide variety of end applications, including high-performance computing, artificial intelligence (AI), automotive, and mobile. Despite clear advantages, there are new challenges that need to be addressed for successful multi-die realization. This article gives a high-level overview of the multi-die test challenges that go beyond the design p... » read more

Are You Ready For HBM4? A Silicon Lifecycle Management (SLM) Perspective


Many factors are driving system-on-chip (SoC) developers to adopt multi-die technology, in which multiple dies are stacked in a three-dimensional (3D) configuration. Multi-die systems may make power and thermal issues more complex, and they have required major innovations in electronic design automation (EDA) implementation and test tools. These challenges are more than offset by the advantages... » read more

Droop And Silent Data Corruption


By Aakash Jani and Lee Vick Let me set the scene. You are a child psychologist (played by, let’s say, Bruce Willis for illustrative purposes), and you are sitting next to a frightened kid. He turns to you and whispers, “I see dead bits.” Okay, I grant you that’s not exactly the quote, but data center operators are seeing transient errors at an alarming rate, and at scale. These error... » read more

Reducing Design Margins With Silicon Model Calibration


By Guy Cortez and Mark Laird It’s no secret to anyone that chip design gets harder every year. There are two major trends driving these ever-increasing challenges. The first is the continual scaling down to smaller design nodes. Although the pace of new node introduction has slowed somewhat in recent years, the impact of each new geometry and process is more dramatic than ever before. Acce... » read more

IC Test And Quality Requirements Drive New Collaboration


Rapidly increasing chip and package complexity, coupled with an incessant demand for more reliability, has triggered a frenzy of alliances and working relationships that are starting to redefine how chips are tested and monitored. At the core of this shift is a growing recognition that no company can do everything, and that to work together will require much tighter integration of flows, met... » read more

← Older posts