System Bits: July 23


Superconductivity seen in trilayer graphene Stanford University and University of California at Berkeley researchers discovered signs of superconductivity in stacking three-layer sheets of graphene, they report. “It’s definitely an exciting development,” says Cory Dean, a physicist at Columbia University. Dean notes that bilayer graphene superconducts only when the atomic lattices of ... » read more

Manufacturing Bits: May 21


World’s loudest underwater sound A group of researchers hit tiny jets of water with a high-power X-ray laser, creating a record for the world’s loudest underwater sound. The intensity of the blast resulted in an underwater sound with an intensity greater than 270 decibels (dB). That’s greater than the intensity of a rocket launch or equivalent of creating electrical power for a city o... » read more

Manufacturing Bits: April 30


Single-atom catalysts A group of researchers have captured the behavior of a single-atom catalyst, a move that could one day help design more efficient catalysts in systems. A catalyst is a substance that increases the rate of a chemical reaction. In vehicles, for example, platinum is used as a catalyst, which speeds up chemical reactions and cleans exhaust gases. Besides platinum, the indu... » read more

System Bits: Aug. 7


ML leverages existing hospital patient data to detect trouble Focusing on emergency and critical care patients, a University of Michigan spinout, Fifth Eye, has developed a system that combines a machine learning algorithm with signal processing to monitor the autonomic nervous system of hospital patients and interprets the data every two minutes, which can sometimes be almost two days faster ... » read more

Manufacturing Bits: Feb. 27


Magnesium-ion batteries Texas A&M University and others have discovered a new metal-oxide magnesium battery cathode material—a technology that promises to deliver a higher density of energy storage than today’s traditional lithium-ion (Li-ion) cells. Magnesium-ion battery technology is promising. A battery consists of an anode (negative), cathode (positive), electrolytes and a separat... » read more

Power/Performance Bits: Oct. 31


Battery material supplies Researchers at MIT, the University of California at Berkeley, and the Rochester Institute of Technology conducted an analysis of whether there are enough raw materials to support increased lithium-ion battery production, expected to grow significantly due to electric vehicles and grid-connected battery systems. They conclude that while in the near future there shou... » read more

Power/Performance Bits: Jan. 17


Creating magnets with electricity Researchers at the SLAC National Accelerator Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Korea Institute of Materials Science, Pohang University of Science and Technology, Max Planck Institute, and the University of New South Wales drew magnetic squares in a nonmagnetic material with an electrified pen and then "read" this magneti... » read more

Power/Performance Bits: Jan. 3


Paper-based bacteria battery Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics. The manufacturing technique reduces fabrication time and cost, and the design could revolutionize the use of bio-batteries as a power source in remote, dangerous and resource-limited areas. ... » read more

Manufacturing Bits: Feb. 9


3D chip consortium The 3D integration consortium of IRT Nanoelec has a new member--EV Group. Based in Grenoble, France, IRT Nanoelec is an R&D center headed by CEA-Leti. Formed in 2012, the 3D integration consortium is one of IRT’s core programs. EV Group joins Leti, Mentor Graphics, SET and STMicroelectronics as members of the 3D consortium. The program is developing a 3D integration ... » read more

Newer posts →