Power/Performance Bits: Sept. 3


Nylon capacitor Researchers at the Max Planck Institute for Polymer Research, Johannes Gutenberg University of Mainz, and Lodz University of Technology developed a way to fabricate ferroelectric nylon thin-film capacitors. Nylons consist of a long chain of polymers and, along with use in textiles, exhibit ferroelectric properties. However, electronic applications have been limited as there ... » read more

Power/Performance Bits: Aug. 5


Biofuels from microorganisms Researchers at Uppsala University are working on adapting microorganisms to be capable of producing useful biofuels out of carbon dioxide and solar energy. The team is focused on a series of modified cyanobacteria that produces the alcohol butanol, said Pia Lindberg, Senior Lecturer at the Department of Chemistry Ångström Laboratory, Uppsala University. "When ... » read more

Power/Performance Bits: July 23


Image-recognizing glass Engineers at the University of Wisconsin-Madison, MIT, and Columbia University developed a way to create 'smart' glass capable of performing image recognition tasks without the need for electronics or power. "We're using optics to condense the normal setup of cameras, sensors and deep neural networks into a single piece of thin glass," said Zongfu Yu, electrical and ... » read more

Power/Performance Bits: June 10


Quantum dots plus perovskites Researchers at the University of Toronto and KAUST created a hybrid material for solar cells that utilizes both perovskites and quantum dots. Both quantum dots and perovskites suffer from instability: perovskites degrade quickly and certain types become incapable of fully absorbing solar radiation at room temperature, while quantum dots must be covered with a p... » read more

Power/Performance Bits: May 6


Compressing objects Computer scientists at MIT propose a way to improve data compression in memory by focusing on objects rather than cache lines. "The motivation was trying to come up with a new memory hierarchy that could do object-based compression, instead of cache-line compression, because that's how most modern programming languages manage data," said Po-An Tsai, a graduate student at... » read more

Power/Performance Bits: April 30


Printed supercapacitors Researchers at Drexel University and Trinity College created ink for an inkjet printer from MXene, a highly conductive two-dimensional material, which could be used to print flexible energy storage components, such as supercapacitors, in any size or shape. The material shows promise as an ink thanks to its high conductivity and ability to apply easily to surfaces usi... » read more

Power/Performance Bits: April 23


Tiny spectrometer Engineers at the University of Wisconsin-Madison, Sandia National Laboratories, and Huazhong University of Science and Technology developed a miniature spectrometer small enough to integrate with the camera on a typical cellphone without sacrificing accuracy. This miniature sensor is CMOS compatible. "This is a compact, single-shot spectrometer that offers high resolution ... » read more

Power/Performance Bits: Mar. 5


Solar chemical manufacturing Researchers at RMIT University, CSIRO Manufacturing, and University of Melbourne developed a nano-enhanced material that can capture 99% of light and use it to power chemical reactions. One of the world's biggest energy users, the chemical manufacturing industry accounts for about 10% of global energy consumption and 7% of industrial greenhouse gas emissions. In th... » read more

Power/Performance Bits: Feb. 19


Flexible energy harvesting rectenna Researchers from MIT, Universidad Politécnica de Madrid, University Carlos III of Madrid, Boston University, University of Southern California, and the Army Research Laboratory created a flexible rectenna capable of converting energy from Wi-Fi signals into electricity to power small devices and sensors. The device uses a flexible RF antenna to capture e... » read more

Power/Performance Bits: Jan. 2


High-temp electronics Researchers at Purdue University, UC Santa Cruz, and Stanford developed a semiconducting plastic capable of operating at extreme temperatures. The new material, which combines both a semiconducting organic polymer and a conventional insulating organic polymer could reliably conduct electricity in up to 220 degrees Celsius (428 F). "One of the plastics transports the ch... » read more

← Older posts