中文 English

Parallel RF Test For Next-Generation Communications


The test economics of state-of-the-art smartphones, tablets and routers demand highly parallel RF test. We are addressing this next wave in RF communications test, enabled by Wi-Fi 6E, operating in the 6GHz band and coming up to 7.125GHz. This forthcoming update to the Wi-Fi standard will extend the features and capabilities, including higher performance, lower latency, and faster data rates fo... » read more

Testing VCSEL Devices On-Wafer


Vertical-Cavity Surface-Emitting Lasers, or VCSELs, are seeing unparalleled demand, thanks to new uses for them in smartphone and automotive applications. 3D sensing for facial recognition is the key application in smartphones, with up to three VCSEL dies being integrated into a single phone. Emerging automotive applications such as driver monitoring, infotainment control and LiDAR will provide... » read more

Metrology at Automated Test Equipment Manufacturers


New technologies require an efficient qualification infrastructure to determine and qualify technical specifications. Metrology is the science which determines the acknowledged specification setting process based on proven international standards. This paper describes metrology and its role and benefits in automated test equipment business. By Piotr Skwierawski and Ralf Haefner. Click her... » read more

Better Quality RTL


How do you measure the quality of RTL? Philippe Luc, director of verification at Codasip, talks about identifying bugs, improving the overall quality of the verification, what happens when different blocks are used in a design, and how to improve efficiency in the verification process. » read more

Achieving Physical Reliability Of Electronics With Digital Design


By John Parry and G.A. (Wendy) Luiten With today’s powerful computational resources, digital design is increasingly used earlier in the design cycle to predict zero-hour nominal performance and to assess reliability. The methodology presented in this article uses a combination of simulation and testing to assess design performance, providing more reliability and increased productivity. ... » read more

Why AI Systems Are So Hard To Predict


AI can do many things, but how to ensure that it does the right things is anything but clear. Much of this stems from the fact that AI/ML/DL systems are built to adapt and self-optimize. With properly adjusted weights, training algorithms can be used to make sure these systems don't stray too far from the starting point. But how to test for that, in the lab, the fab and in the field is far f... » read more

Testing Silicon Photonics In Production


As silicon photonics costs come down, the technology is being worked into new applications, from connectivity to AI. But full commercial production requires testing those photonic circuits before shipping them. Photonics testing is only getting started. Volume production is still not happening, and test equipment and techniques are still being developed. What exists today is a blend of exist... » read more

Using Analytics To Reduce Burn-in


Silicon providers are using adaptive test flows to reduce burn-in costs, one of the many approaches aimed at stemming cost increases at advanced nodes and in advanced packages. No one likes it when their cell phone fails within the first month of ownership. But the problems are much more pressing when the key components in data warehouse servers or automobiles fail. Reliability expectations ... » read more

System-Level Test Methodologies Take Center Stage


Because electronic systems for all applications in end-user markets must provide the highest possible reliability to match customers’ quality expectations, semiconductor components undergo multiple tests and stress steps to screen out defects that could arise during their lifecycle. Due to new semiconductor devices’ increasing design complexity and extreme process technology, increased test... » read more

Predicting Reliability At 3/2nm And Beyond


The chip industry is determined to manufacture semiconductors at 3/2nm — and maybe even beyond — but it's unlikely those chips will be the complex all-in-one SoCs that have defined advanced electronics over the past decade or so. Instead, they likely will be one of many tiles in a system that define different functions, the most important of which are highly specialized for a particular app... » read more

← Older posts Newer posts →