Achieving Successful Timing, Power, And Physical Signoff For Multi-Die Designs


Multi-die designs using 2.5D and 3D technologies are increasingly important for a wide range of electronics applications, including high-performance computing (HPC), artificial intelligence (AI), automotive, and mobile. The multi-die architecture enables designers to mix dies from different foundries and technology nodes, including existing dies from previous projects. The resulting density and... » read more

Timing Challenges In The Age Of AI Hardware


In recent years, we have seen a clear market trend towards dedicated integrated circuits (ASICs) that are much more efficient in performance and energy consumption than traditional general-purpose computers for processing AI workloads. These AI accelerators harden deep learning algorithm kernels into circuits, enable higher data ingestion bandwidth with local memory, and perform massively paral... » read more

Lower Process Nodes Drive Timing Signoff Software Evolution


A dramatic rise in design complexity has led to a slew of new signoff challenges that impact the ability to predictably meet PPA targets. Smaller technology nodes and larger design sizes have caused the number of corners and modes to grow exponentially leading to much longer turnaround times for timing signoff. Moreover, larger design sizes demand huge compute resources for timing signoff. I... » read more

The Challenge Of Balancing Performance And Accuracy For Advanced Node Timing Signoff


As process nodes shrink, complexity, cost and overall risk expand. Process variability that once was once acceptable now becomes a critical item as operating voltage decreases. Simply adding design margin makes the chip non-competitive. Physical effects that were once ignored now become critical as well. The impact of interconnect can no longer be modeled based on simple circuit topology. Layou... » read more