Power/Performance Bits: April 16


Faster CNN training Researchers at North Carolina State University developed a technique that reduces training time for deep learning networks by more than 60% without sacrificing accuracy. Convolutional neural networks (CNN) divide images into blocks, which are then run through a series of computational filters. In training, this needs to be repeated for the thousands to millions of images... » read more

Fundamentals Of Semiconductor ISO 26262 Certification: People, Process And Product


Written by an ISO 26262 working group member who contributed to the new ISO 26262:2018 Part 11, this paper dispels myths about ISO 26262 certification and seeks to enhance the reader’s knowledge regarding all aspects of the ISO 26262 standard. Provides information on employee training and certification courses, functional safety consulting services, and accredited certification by exida, T... » read more

The Automation Of AI


Semiconductor Engineering sat down to discuss the role that EDA has in automating artificial intelligence and machine learning with Doug Letcher, president and CEO of Metrics; Daniel Hansson, CEO of Verifyter; Harry Foster, chief scientist verification for Mentor, a Siemens Business; Larry Melling, product management director for Cadence; Manish Pandey, Synopsys fellow; and Raik Brinkmann, CEO ... » read more

The Other Side Of Makimoto’s Wave


Custom hardware is undergoing a huge resurgence across a variety of new applications, pushing the semiconductor industry to the other side of Makimoto's Wave. Tsugio Makimoto, the technologist who identified the chip industry’s 10-year cyclical swings between standardization and customization, predicted there always will be room in ASICs for general-purpose processors. But it's becoming mo... » read more

Pushing AI Into The Mainstream


Artificial intelligence is emerging as the driving force behind many advancements in technology, even though the industry has merely scratched the surface of what may be possible. But how deeply AI penetrates different market segments and technologies, and how quickly it pushes into the mainstream, depend on a variety of issues that still must be resolved. In addition to a plethora of techni... » read more

Power/Performance Bits: Jan. 22


Efficient neural net training Researchers from the University of California San Diego and Adesto Technologies teamed up to improve neural network training efficiency with new hardware and algorithms that allow computation to be performed in memory. The team used an energy-efficient spiking neural network for implementing unsupervised learning in hardware. Spiking neural networks more closel... » read more

Mostly Upbeat Outlook For Chips


2019 has started with cautious optimism for the semiconductor industry, despite dark clouds that dot the horizon. Market segments such as cryptocurrencies and virtual reality are not living up to expectations, the market for smart phones appears to be saturated, and DRAM prices are dropping, leading to cut-backs in capital expenditures. EDA companies are talking about sales to China being pu... » read more

AI Market Ramps Everywhere


Artificial Intelligence (AI) has inspired the general populace, but its rapid rise over the past few years has given many people pause. From realistic concerns about robots taking over jobs to sci-fi scares about robots more intelligent than humans building ever smarter robots themselves, AI inspires plenty of angst. Within the technology industry, we have a better understanding about the pote... » read more

AI Accelerator Gyrfalcon Soars Post Stealth


Milpitas, Calif.-based startup Gyrfalcon Technology Inc. (GTI), which emerged from semi-stealth mode in September, recently announced the datacenter-focused second generation of its neural-network accelerator, which was first aimed at the endpoint. GTI is not alone: The endpoint market is growing. By 2022, 25% of endpoint devices will execute AI algorithms (inference for neural network appli... » read more

Building AI SoCs


Ron Lowman, strategic marketing manager at Synopsys, looks at where AI is being used and how to develop chips when the algorithms are in a state of almost constant change. That includes what moves to the edge versus the data center, how algorithms are being compressed, and what techniques are being used to speed up these chips and reduce power. https://youtu.be/d32jtdFwpcE    ... » read more

← Older posts