Achieving Greater Accuracy In Real-Time Vision Processing With Transformers


Transformers, first proposed in a Google research paper in 2017, were initially designed for natural language processing (NLP) tasks. Recently, researchers applied transformers to vision applications and got interesting results. While previously, vision tasks had been dominated by convolutional neural networks (CNNs), transformers have proven surprisingly adaptable to vision tasks like image cl... » read more

Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices


Abstract:  "Recent advances in deep learning have been driven by ever-increasing model sizes, with networks growing to millions or even billions of parameters. Such enormous models call for fast and energy-efficient hardware accelerators. We study the potential of Analog AI accelerators based on Non-Volatile Memory, in particular Phase Change Memory (PCM), for software-equivalent accurate i... » read more

There’s More To Machine Learning Than CNNs


Neural networks – and convolutional neural networks (CNNs) in particular – have received an abundance of attention over the last few years, but they're not the only useful machine-learning structures. There are numerous other ways for machines to learn how to solve problems, and there is room for alternative machine-learning structures. “Neural networks can do all this really comple... » read more

Newer posts →